Sediment microbial communities drive the biogeochemical cycles that make rivers globally important sources and sinks of carbon (C) and nitrogen (N). The structure of these communities is strongly determined by the local physico-chemical environment. However, we currently lack an understanding of the factors that determine microbial community structures at the catchment scale.
View Article and Find Full Text PDFNaphthenic acids (NAs) are carboxylic acids with the formula (C H O ) and are among the most toxic, persistent constituents of oil sands process-affected waters (OSPW), produced during oil sands extraction. Currently, the proteins and mechanisms involved in NA biodegradation are unknown. Using LC-MS/MS shotgun proteomics, we identified proteins overexpressed during the growth of Pseudomonas fluorescens Pf-5 on a model NA (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and commercial NA mixture (Acros).
View Article and Find Full Text PDFThis study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition.
View Article and Find Full Text PDFIsoprene, a volatile hydrocarbon emitted largely by plants, plays an important role in regulating the climate in diverse ways, such as reacting with free radicals in the atmosphere to produce greenhouse gases and pollutants. Isoprene is both deposited and formed in soil, where it can be consumed by some soil microbes, although much remains to be understood about isoprene consumption in tropical soils. In this study, isoprene-degrading bacteria from soils associated with tropical plants were investigated by cultivation and cultivation-independent approaches.
View Article and Find Full Text PDFEcological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results.
View Article and Find Full Text PDFIn September 2017 the Agia Zoni II sank in the Saronic Gulf, Greece, releasing approximately 500 tonnes of heavy fuel oil, contaminating the Salamina and Athens coastlines. Effects of the spill, and remediation efforts, on sediment microbial communities were quantified over the following 7 months. Five days post-spill, the concentration of measured hydrocarbons within surface sediments of contaminated beaches was 1,093-3,773 μg g dry sediment (91% alkanes and 9% polycyclic aromatic hydrocarbons), but measured hydrocarbons decreased rapidly after extensive clean-up operations.
View Article and Find Full Text PDFIn cold marine environments, the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8, which utilizes aliphatic alkanes almost exclusively as substrates, dominates microbial communities following oil spills. In this study, LC-MS/MS shotgun proteomics was used to identify changes in the proteome induced during growth on n-alkanes and in cold temperatures. Specifically, proteins with significantly higher relative abundance during growth on tetradecane (n-C ) at 16°C and 4°C have been quantified.
View Article and Find Full Text PDFSome haloarchaea avoid the harsh conditions present in evaporating brines by entombment in brine inclusions within forming halite crystals, where a subset of haloarchaea survives over geological time. However, shifts in the community structure of halite-entombed archaeal communities remain poorly understood. Therefore, we analysed archaeal communities from in situ hypersaline brines collected from Trapani saltern (Sicily) and their successional changes in brines versus laboratory-grown halite over 21 weeks, using high-throughput sequencing.
View Article and Find Full Text PDFAlcanivorax borkumensis SK2 is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n-C ) or branched (pristane) alkanes.
View Article and Find Full Text PDFThe marine obligate hydrocarbonoclastic bacterium MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (-C) or long-chain (-C) alkanes. During growth on -C, expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase.
View Article and Find Full Text PDFLimitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E.
View Article and Find Full Text PDFNitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium.
View Article and Find Full Text PDFMechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL.
View Article and Find Full Text PDFOptimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for > 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2 , perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m(-2) s(-1) (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics.
View Article and Find Full Text PDFWithin intertidal sediments, much of the dissolved organic carbon (DOC) consists of carbohydrate-rich extracellular polymeric substances (EPS) produced by microphytobenthic biofilms. EPS are an important source of carbon and energy for aerobic and anaerobic microorganisms owing to burial of microphytobenthos and downward transport of their exudates. We established slurries of estuarine biofilms to determine the fate of organic carbon and EPS fractions, differing in size and complexity, under oxic and anoxic conditions.
View Article and Find Full Text PDFCoastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.
View Article and Find Full Text PDFThe marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession.
View Article and Find Full Text PDFMudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat.
View Article and Find Full Text PDFIn this study, the microbial community within compost, emitted into the airstream, downwind and upwind from a composting facility was characterized and compared through phospholipid fatty acid analysis and 16S rRNA gene analysis using denaturing gradient gel electrophoresis and bar-coded pyrosequencing techniques. All methods used suggested that green-waste composting had a significant impact upon bioaerosol community composition. Daily variations of the on-site airborne community showed how specific site parameters such as compost process activity and meteorological conditions affect bioaerosol communities, although more data are required to qualify and quantify the causes for these variations.
View Article and Find Full Text PDFPeriods of desiccation and rewetting are regular, yet stressful events encountered by saltmarsh microbial communities. To examine the resistance and resilience of microbial biofilms to such stresses, sediments from saltmarsh creeks were allowed to desiccate for 23 days, followed by rewetting for 4 days, whereas control sediments were maintained under a natural tidal cycle. In the top 2 mm of the dry sediments, salinity increased steadily from 36 to 231 over 23 days, and returned to seawater salinity on rewetting.
View Article and Find Full Text PDFBackground: The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored.
View Article and Find Full Text PDFThere is little information on how different strategies for the bioremediation of marine oil spills influence the key indigenous hydrocarbon-degrading bacteria (hydrocarbonoclastic bacteria, HCB), and hence their remediation efficacy. Therefore, we have used quantitative polymerase chain reaction to analyse changes in concentrations of HCB in response to intervention strategies applied to experimental microcosms. Biostimulation with nutrients (N and P) produced no measurable increase in either biodegradation or concentration of HCB within the first 5 days, but after 15 days there was a significant increase (29%; P < 0.
View Article and Find Full Text PDF