The Atlantic salmon, Salmo Salar, is a societally important species of fish, both as a food source and as a component of aquatic biosphere. Its sustainable production is hampered by a wide range of infectious diseases, which is difficult to address due to the lack of in vitro tools to study the disease-host interaction. In this paper, we describe the establishment and characterization of a homogenous Atlantic salmon skin fibroblast (ASSF) cell line.
View Article and Find Full Text PDFMULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM).
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied.
View Article and Find Full Text PDFThe innate immune and host-protective responses to viruses, such as the airway pathogen human metapneumovirus (HMPV), depend on interferons (IFNs) that is induced through TANK-binding kinase 1 (TBK1) and IFN regulatory factors (IRFs). The transcription factor IRF1 is important for host resistance against several viruses and has a key role in induction of IFN-λ at mucosal surfaces. In most cell types IRF1 is expressed at very low levels, but its mRNA is rapidly induced when the demand for IRF1 activity arises.
View Article and Find Full Text PDFROR family of nuclear receptor transcription factors forms nodes connecting metabolic and inflammatory signaling pathways. The RORα members of the family have intrinsic transcriptional activity and they are involved in both activation and repression of a wide range of genes. The role of RORα in control of inflammation has been extensively studied using animal models but its function in human cells is not as well understood.
View Article and Find Full Text PDFThe transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells.
View Article and Find Full Text PDFHepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression.
View Article and Find Full Text PDFAngiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans.
View Article and Find Full Text PDFHost cells use metabolic signaling through the LXRα nuclear receptor to defend against Listeria monocytogenes infection. 25-Hydroxycholesterol is a natural ligand of LXRs that is produced by the enzyme cholesterol 25-hydroxylase (CH25H). We found that expression of Ch25h is upregulated following L.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2010
Candida albicans is a ubiquitous opportunistic pathogen that is the most prevalent cause of hospital-acquired fungal infections. In mammalian hosts, C. albicans is engulfed by phagocytes that attack the pathogen with DNA-damaging reactive oxygen species (ROS).
View Article and Find Full Text PDFHost susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.
View Article and Find Full Text PDFIntrahepatic and extrahepatic metastases are common findings in hepatocellular carcinoma (HCC). Insulin-like growth factor 2 (IGF2) expression is frequently induced in HCC, and serum IGF2 levels correlate with the presence of extrahepatic metastases. Yet, the role of IGF-induced signaling in the dissemination of HCC remains unclear.
View Article and Find Full Text PDFHaemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels.
View Article and Find Full Text PDFGenetic makeup of the host plays a significant role in the course and outcome of infection. Inbred strains of mice display a wide range of sensitivities to Listeria monocytogenes infection and thus serve as a good model for analysis of the effect of genetic polymorphism. The outcome of L.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. HCC patients frequently present with disease that has metastasized to other regions of the liver, the portal vein, lymph nodes, or lungs, leading to poor prognoses. Therefore, model systems that allow exploration of the molecular mechanisms underlying metastasis in this disease are greatly needed.
View Article and Find Full Text PDFWe undertook a quantitative trait locus (QTL) analysis in mice to identify modifier genes that might influence the severity of human iron disorders. We identified a strong QTL on mouse chromosome 9 that differentially affected macrophage iron burden in C57BL/10J and SWR/J mice. A C57BL/10J missense allele of an evolutionarily conserved gene, Mon1a, cosegregated with the QTL in congenic mouse lines.
View Article and Find Full Text PDFFor almost half a century, the mouse model of Listeria monocytogenes infection has been used to analyse both innate and adaptive components of immunity and to discover key immune genes. Vast accumulated knowledge about the disease in mice provides a unique framework for identifying and characterising immune molecules using a variety of experimental approaches. To illustrate the range of questions that can be addressed using modern genetics and genomics tools, the authors provide an overview of the analysis of components of immune signalling networks using the mouse model of L.
View Article and Find Full Text PDFEpidemiological, clinical, and experimental approaches have convincingly demonstrated that host resistance to infection with intracellular pathogens is significantly influenced by genetic polymorphisms. Using a mouse model of infection with virulent Mycobacterium tuberculosis (MTB), we have previously identified the sst1 locus as a genetic determinant of host resistance to tuberculosis. In this study we demonstrate that susceptibility to another intracellular pathogen, Listeria monocytogenes, is also influenced by the sst1 locus.
View Article and Find Full Text PDFThe B10.Q/J strain of mice was serendipitously discovered to be highly susceptible to infection by the intracellular protozoan parasite, Toxoplasma gondii but markedly resistant to induction of autoimmune arthritis. We have previously shown that the B10.
View Article and Find Full Text PDFSpt3 of Saccharomyces cerevisiae is required for the normal transcription of many genes in vivo. Past studies have shown that Spt3 is required for both mating and sporulation, two events that initiate when cells are at G(1)/START. We now show that Spt3 is needed for two other events that begin at G(1)/START, diploid filamentous growth and haploid invasive growth.
View Article and Find Full Text PDFAlthough the role of host heredity in susceptibility to infectious diseases is significant, the genetic control of immunity to infection remains poorly understood. Advances in experimental and epidemiological analyses of complex genetic traits have led to the discoveries of novel genetic determinants of host resistance. New loci that control susceptibility to a number of intracellular pathogens have been identified using mouse models of infectious diseases.
View Article and Find Full Text PDFBackground: Inbred mouse strains exhibit striking differences in the susceptibility of their macrophages to the effects of anthrax lethal toxin (LeTx). Previous data has shown that this difference in susceptibility lies downstream of toxin entry into macrophages. A locus controlling this phenotype, called Ltxs1, has been mapped to chromosome 11, but the responsible gene has not been identified.
View Article and Find Full Text PDFWe have used a novel quantitative trait locus model to study the genetics of survival of F2 progeny of susceptible BALB/cByJ and resistant C57BL/6ByJ mice that have been infected with Listeria monocytogenes. This allowed us to map modifiers of L. monocytogenes susceptibility to chromosomes 5 and 13.
View Article and Find Full Text PDFMany proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed.
View Article and Find Full Text PDF