Publications by authors named "Boyang Qi"

Article Synopsis
  • ARDS/ALI is a severe condition characterized by lung inflammation and increased permeability, primarily caused by the deterioration of the endothelial glycocalyx.
  • PLD2 has been linked to ARDS/ALI, but its specific role in damaging the endothelial glycocalyx wasn't clear until this study, which used both in vivo and in vitro models to investigate the effects of PLD2.
  • Findings indicate that PLD2 deficiency reduces the degradation of syndecan-1 and expression of inflammatory cytokines, suggesting it may protect endothelial cells from injury during ARDS/ALI by inhibiting the inflammatory response.
View Article and Find Full Text PDF

Chronic diabetic wounds pose a serious threat to human health and safety because of their refractory nature and high recurrence rates. The formation of refractory wounds is associated with wound microenvironmental factors such as increased expression of proinflammatory factors and oxidative stress. Bilirubin is a potent endogenous antioxidant, and morin is a naturally active substance that possesses anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites.

View Article and Find Full Text PDF

Background: Increased inflammatory exudation caused by endothelium and endothelial junction damage is a typical pathological feature of acute respiratory distress syndrome/acute lung injury (ARDS/ALI). Previous studies have shown that phospholipase D2 (PLD2) can increase the inflammatory response and has a close relationship with the severity of sepsis-induced ALI and the mortality of sepsis, but its mechanism is unknown. This study explored the effect and mechanism of PLD2 deletion on the structure and function of endothelial tight junction (TJ) in lipopolysaccharide (LPS)-induced ALI.

View Article and Find Full Text PDF

Objective: To investigate the role and possible pathogenesis of high mobility group protein B1 (HMGB1) in lipopolysaccharide (LPS)-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS).

Methods: (1) In vivo, 24 SPFC57BL/6 male mice were randomly divided into normal control group, ALI/ARDS model group, ethyl pyruvate (EP) treatment group and EP control group, with 6 mice in each group. The ALI/ARDS model was established by intraperitoneal injection of 20 mg/kg LPS.

View Article and Find Full Text PDF

Non-precious metal catalysts with good soot catalytic properties and a low cost have great potential for application in diesel particulate filters (DPF). In this study, we compared the effects of DPF supported by CsVO (Cs-V-based) non-precious metal catalysts and conventional Pt-Pd-based precious metal catalysts on the performance of a non-road diesel engine. Furthermore, the effects of on-wall coating and in-wall coating of Cs-V-based catalysts on DPF performance were also investigated.

View Article and Find Full Text PDF

Biodiesel is a promising clean and alternative fuel that can meet the demand of energy saving and environmental protection. In this study, the effects of biodiesel blends on the gaseous and particulate emission characteristics of China-III, IV, and V urban buses were investigated based on a heavy chassis dynamometer. The results showed that the biodiesel blend resulted in a reduction in CO, THC, PN, and PM emission but an increase in the NOx and CO emission, and the effects were enhanced with the biodiesel ratio, which also depended on the bus speed.

View Article and Find Full Text PDF

The main pathophysiological mechanism of acute respiratory distress syndrome (ARDS) invovles the increase in alveolar barrier permeability that is primarily caused by epithelial glycocalyx and tight junction (TJ) protein destruction. This study was performed to explore the effects of the alveolar epithelial glycocalyx on the epithelial barrier, specifically on TJ proteins, in ARDS. We used C57BL/6 mice and human lung epithelial cell models of lipopolysaccharide (LPS)-induced ARDS.

View Article and Find Full Text PDF

Background: Sepsis is a serious systemic inflammatory response that primarily affects the lungs and kidneys. Moreover, a few drugs can effectively treat this disease. Mangiferin (MF) is a xanthone glucoside that possesses many pharmacological effects.

View Article and Find Full Text PDF

Objective: To explore the mechanisms of crocin against glycocalyx damage and inflammatory injury in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) mice and LPS-stimulated human umbilical vein endothelial cells (HUVECs).

Methods: Mice were randomly divided into control, LPS, and crocin + LPS (15, 30, and 60 mg/kg) groups. HUVECs were separated into eight groups: control, crocin, matrix metalloproteinase 9 inhibitor (MMP-9 inhib), cathepsin L inhibitor (CTL inhib), LPS, MMP-9 inhib + LPS, CTL inhib + LPS, and crocin + LPS.

View Article and Find Full Text PDF

Damage to the integrity of heparin sulfate (HS) in the endothelial glycocalyx is an important factor of glomerular filtration barrier dysfunction, which is the basic pathological feature of acute kidney injury (AKI). AKI is a common clinical critical illness with few drugs options offering effective treatment. Phillyrin (Phil), the main pharmacological component of Forsythia suspensa, possesses a wide range of pharmacological activities.

View Article and Find Full Text PDF