The efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been lagging behind the Shockley-Queisser limit primarily due to the presence of deep-level defects. These deep-level defects cause critical issues such as short carrier diffusion length, significant band tailing, and a large open-circuit voltage (VOC) deficit, ultimately leading to low device efficiency. To address these issues, we propose a post-fabrication defect healing strategy by dip-coating the CZTSSe film in dimethylformamide (DMF) solvent.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive trace detection technique in recent decades, yet its exceptional performance remains elusive in semiconductor materials due to the intricate and ambiguous nature of the SERS mechanism. Herein, we have synthesized MoS nanoflowers (NFs) decorated with Au nanoparticles (NPs) by hydrothermal and redox methods to explore the size-dependence SERS effect. This strategy enhances the interactions between the substrate and molecules, resulting in exceptional uniformity and reproducibility.
View Article and Find Full Text PDFNatural proteins are normally made by 20 canonical amino acids. Genetic code expansion (GCE) enables incorporation of diverse chemically synthesized noncanonical amino acids (ncAAs) by orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs using nonsense codons, which could significantly expand new functionalities of proteins in both scientific and biomedical applications. Here, by hijacking the cysteine biosynthetic enzymes, we describe a method combining amino acid biosynthesis and GCE to introduce around 50 structurally novel ncAAs into proteins by supplementation of commercially available aromatic thiol precursors, thus eliminating the need to chemically synthesize these ncAAs.
View Article and Find Full Text PDFThe Chinese alligator (), found only in a small region in southeastern Anhui Province, is listed as critically endangered (CR) by the International Union for Conservation of Nature (IUCN) due to its current declining population trend. Any abnormalities in the physical properties of an egg can decrease the hatching rate. In particular, eggshells play an essential role in embryo development, motivating us to analyze the microstructures of the eggshells of Chinese alligators.
View Article and Find Full Text PDFGenetic encoding of noncanonical amino acid (ncAA) for site-specific protein modification has been widely applied for many biological and therapeutic applications. To efficiently prepare homogeneous protein multiconjugates, we design two encodable noncanonical amino acids (ncAAs), 4-(6-(3-azidopropyl)-s-tetrazin-3-yl) phenylalanine (pTAF) and 3-(6-(3-azidopropyl)-s-tetrazin-3-yl) phenylalanine (mTAF), containing mutually orthogonal and bioorthogonal azide and tetrazine reaction handles. Recombinant proteins and antibody fragments containing the TAFs can easily be functionalized in one-pot reactions with combinations of commercially available fluorophores, radioisotopes, PEGs, and drugs in a plug-and-play manner to afford protein dual conjugates to assess combinations of tumor diagnosis, image-guided surgery, and targeted therapy in mouse models.
View Article and Find Full Text PDFIncorporation of structurally novel noncanonical amino acids (ncAAs) into proteins is valuable for both scientific and biomedical applications. To expand the structural diversity of available ncAAs and to reduce the burden of chemically synthesizing them, we have developed a general and simple biosynthetic method for genetically encoding novel ncAAs into recombinant proteins by feeding cells with economical commercially available or synthetically accessible aromatic thiols. We demonstrate that nearly 50 ncAAs with a diverse array of structures can be biosynthesized from these simple small-molecule precursors by hijacking the cysteine biosynthetic enzymes, and the resulting ncAAs can subsequently be incorporated into proteins via an expanded genetic code.
View Article and Find Full Text PDFA versatile method for the construction of C(sp)-linked cyclophane peptide macrocycles via Pd-catalyzed picolinamide-directed intramolecular arylation of aryl and alkenyl C-H bonds of amino acid side chains with aryl iodides is developed. This method provides simple and efficient access to a variety of cyclophane-braced structures from readily accessible linear peptide precursors.
View Article and Find Full Text PDFCyclic peptides have provided one of the most important platforms for exploration of biorelevant chemical space between small molecules and biologics. However, in comparison with the design and synthesis of small molecules, chemists' ability to fine-tune the three-dimensional structures and properties of cyclic peptides lag far behind. Intrigued by cyclophane peptide natural products, we wondered whether the rigid, planar, and hydrophobic cyclophane motif could provide a new design element for the synthesis of cyclic peptides with well-behaved 3D structures.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
April 2015
Useful pharmacodynamic changes occur when some Chinese medicine are used together with some Western medicine, namely enhanced curative effect, lowered adverse reactions, reduced dosages, shortened treatment courses, enlarged indications scope, improved compliance of treatment and rational medication, which could be explored to provide scientific bases for further improving diagnosis and treatment levels and rational use of drugs.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2012
Tortuous arteries are often associated with aging, hypertension, atherosclerosis, and degenerative vascular diseases, but the mechanisms are poorly understood. Our recent theoretical analysis suggested that mechanical instability (buckling) may lead to tortuous blood vessels. The objectives of this study were to determine the critical pressure of artery buckling and the effects of elastin degradation and surrounding matrix support on the mechanical stability of arteries.
View Article and Find Full Text PDFThe fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers.
View Article and Find Full Text PDFGraphene, a two-dimensional monolayer of sp(2)-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition.
View Article and Find Full Text PDF