The antennal flagellum of the locust S. gregaria is an articulated structure bearing a spectrum of sensilla that responds to sensory stimuli. In this study, we focus on the basiconic-type bristles as a model for sensory system development in the antenna.
View Article and Find Full Text PDFJohnston's organ (Jo) acts as an antennal wind-sensitive and/or auditory organ across a spectrum of insect species and its axons universally project to the brain. In the locust, this pathway is already present at mid-embryogenesis but the process of fasciculation involved in its construction has not been investigated. Terminal projections into the fine neuropilar organization of the brain also remain unresolved, information essential not only for understanding the neural circuitry mediating Jo-mediated behavior but also for providing comparative data offering insights into its evolution.
View Article and Find Full Text PDFJohnston's organ has been shown to act as an antennal auditory organ across a spectrum of insect species. In the hemimetabolous desert locust Schistocerca gregaria, Johnston's organ must be functional on hatching and so develops in the pedicellar segment of the antenna during embryogenesis. Here, we employ the epithelial cell marker Lachesin to identify the pedicellar domain of the early embryonic antenna and then triple-label against Lachesin, the mitosis marker phosphohistone-3, and neuron-specific horseradish peroxidase to reveal the sense-organ precursors for Johnston's organ and their lineages.
View Article and Find Full Text PDFSensory and motor systems in insects with hemimetabolous development must be ready to mediate adaptive behavior directly on hatching from the egg. For the desert locust S. gregaria, cholinergic transmission from antennal sensillae to olfactory or mechanosensory centers in the brain requires that choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT) already be present in sensory cells in the first instar.
View Article and Find Full Text PDFThe antenna is a key sensory organ in insects. Factors which pattern its epithelium and the spacing of sensillae will play an important role in shaping its contribution to adaptive behavior. The antenna of the grasshopper S.
View Article and Find Full Text PDFThe antennal nervous system of the grasshopper Schistocerca gregaria features two parallel axon tracts each established early in embryogenesis by discrete pairs of pioneer neurons located at the antennal tip and whose growth cones contact so-called base pioneers en route to the brain. Here we present two antennal phenotypes in which a stereotypic dysregulation of axogenesis in a given tract is observed when only the base pioneer associated with that pathway is missing, consistent with a role for this cell type in guided axogenesis. Dysregulation involves defasciculation and aberrant navigation by pioneer axons resulting in a missing or depleted primordial antennal nerve to the brain.
View Article and Find Full Text PDFThe tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear.
View Article and Find Full Text PDFWe have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium.
View Article and Find Full Text PDFThe central complex comprises an elaborate system of modular neuropils which mediate spatial orientation and sensory-motor integration in insects such as the grasshopper and Drosophila. The neuroarchitecture of the largest of these modules, the fan-shaped body, is characterized by its stereotypic set of decussating fiber bundles. These are generated during development by axons from four homologous protocerebral lineages which enter the commissural system and subsequently decussate at stereotypic locations across the brain midline.
View Article and Find Full Text PDFThe nervous system of the antenna of the grasshopper Schistocerca gregaria consists of two nerve tracts in which sensory cells project their axons to the brain. Each tract is pioneered early in embryogenesis by a pair of identified cells located apically in the antennal lumen. The pioneers are thought to originate in the epithelium of the antenna and then delaminate into the lumen where they commence axogenesis.
View Article and Find Full Text PDFFront Behav Neurosci
September 2016
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China).
View Article and Find Full Text PDFIn the early embryonic grasshopper, two pairs of sibling cells near the apex of the antenna pioneer its dorsal and ventral nerve tracts to the brain. En route, the growth cones of these pioneers contact a so-called base pioneer associated with each tract and which acts as a guidepost cell. Both apical and basal pioneers express stereotypic molecular labels allowing them to be uniquely identified.
View Article and Find Full Text PDFThe twin nerve tracts of the antenna of the grasshopper Schistocerca gregaria are established early in embryogenesis by sibling pairs of pioneers which delaminate from the epithelium into the lumen at the antennal tip. These cells can be uniquely identified via their co-expression of the neuronal labels horseradish peroxidase and the lipocalin Lazarillo. The apical pioneers direct axons toward the antennal base where they encounter guidepost-like cells called base pioneers which transiently express the same molecular labels as the apical pioneers.
View Article and Find Full Text PDFThe antennae of the grasshopper Schistocerca gregaria possess a pair of nerve pathways which are established by so-called pioneer neurons early in embryonic development. Subsequently, sensory cell clusters mediating olfaction, flight, optomotor responses, and phase changes differentiate from the antennal epithelium at stereotypic locations and direct their axons onto those of the pioneers to then project to the brain. Early in embryonic development, before the antennae become cuticularized, immunolabeling can be used to follow axogenesis in these pioneers and sensory cells.
View Article and Find Full Text PDFArthropod Struct Dev
April 2015
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org10.
View Article and Find Full Text PDFThe antennal nervous system of the grasshopper Schistocerca gregaria comprises two parallel pathways projecting to the brain, each pioneered early in embryogenesis by a pair of sibling cells located at the antennal tip. En route, the growth cones of pioneers from one pathway have been shown to contact a guidepost-like cell called the base pioneer. Its role in axon guidance remains unclear as do the cellular guidance cues regulating axogenesis in the other pathway supposedly without a base pioneer.
View Article and Find Full Text PDFNeuropils in the cerebral midline of Panarthropoda exhibit a wide spectrum of neuroarchitectures--from rudimentary to highly elaborated--and which at first sight defy a unifying neuroarchitectural principle. Developmental approaches have shown that in model arthropods such as insects, conserved cellular and molecular mechanisms first establish a simple axon scaffold in the brain. However, to be adapted for adult life, this immature ground plan is transformed by a developmental process--known in the grasshopper as "fascicle switching"--in which subsets of neurons systematically redirect their growth cones at stereotypic locations across the brain midline.
View Article and Find Full Text PDFDespite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study.
View Article and Find Full Text PDFThis study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable.
View Article and Find Full Text PDFInjection of fluorochromes such as Alexa Fluor(®) 568 into single cells in brain slices reveals a network of dye-coupled cells to be associated with the central complex. Subsequent immunolabeling shows these cells to be repo positive/glutamine synthetase positive/horseradish peroxidase negative, thus identifying them as astrocyte-like glia. Dye coupling fails in the presence of n-heptanol indicating that dye spreads from cell to cell via gap junctions.
View Article and Find Full Text PDFWe have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease.
View Article and Find Full Text PDFThe central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils.
View Article and Find Full Text PDFIn this study we employed the expression of the astrocyte-specific enzyme glutamine synthetase, in addition to the glia-specific marker Repo, to characterize glia cell types associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Double labeling experiments reveal that all glutamine synthetase-positive cells associated with the central complex are also Repo-positive and horseradish peroxidase-negative, confirming they are glia. Early in embryogenesis, prior to development of the central complex, glia form a continuous population extending from the pars intercerebralis into the region of the commissural fascicles.
View Article and Find Full Text PDF