Lithium-ion capacitors (LICs) have attracted intense attention due to their high energy/power densities and good stability. However, their performance is severely limited by the imbalance in reaction kinetics and electrochemical capacity between the faradaic battery-like anodes and non-faradic capacitive cathodes. Here, we propose an all alginate-derived LIC assembled with a three-dimensional porous orthorhombic phase NbO/C hybrid as the anode, seaweed-derived carbon as the cathode and sodium alginate (SA) as the electrode binder.
View Article and Find Full Text PDF2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb C MXenes to remarkably boost their specific capacities for ultrafast Na storage. As revealed, redox-active terminals with a stoichiometric formula of PO - display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond.
View Article and Find Full Text PDFSoil methane generation mainly driven by soil prokaryotic microbes can be coupled with the degradation of petroleum hydrocarbons (PHCs); however, the relationship between prokaryotic community structure and methane production activity in soil with the potential risk of PHC contamination is seldom reported. In this study, 3 soil samples (CS-1 to CS-3) in the area nearby an exploratory gas well and 5 soil samples (DC-1 to DC-5) in a drill cutting dump area were obtained from the Fuling shale gas field (Chongqing City, China). Then, the prokaryotic community structure was examined by Illumina Miseq sequencing, and the linkage between soil methane production rate (MPR) and prokaryotic community composition was analyzed.
View Article and Find Full Text PDFHard carbon attracts wide attentions as the anode for high-energy rechargeable batteries due to its low cost and high theoretical capacities. However, the intrinsically disordered microstructure gives it poor electrical conductivity and unsatisfactory rate performance. Here we report a facile synthesis of N-doped graphitized hard carbon via a simple carbonization and activation of a urea-soaked self-crosslinked Co-alginate for the high-performance anode of lithium/sodium-ion batteries.
View Article and Find Full Text PDFWe prepare group VI transitional metal dichalcogenides (TMDs, or MX) from the 1T phase with quantum-sized and monolayer features via a quasi-full electrochemical process. The resulting two-dimensional (2D) MX (M = W, Mo; X = S, Se) quantum dots (QDs) are ca. 3.
View Article and Find Full Text PDF