Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.
View Article and Find Full Text PDFMitochondrial probe SiRPFA was synthesized by attaching a long perfluoroalkyl chain on Si-rhodamine cationic dye. High lipophilicity endowed SiRPFA with mitochondrial membrane potential independent properties. Under stimulated emission depletion microscopy, SiRPFA clearly revealed changes in mitochondrial cristae morphology during autophagy induced by starvation or apoptosis.
View Article and Find Full Text PDFIt is widely discussed in the literature that a problem of reduction of thermal noise of mid-wave and long-wave infrared (MWIR and LWIR) cameras and focal plane arrays (FPAs) can be solved by using light-concentrating structures. The idea is to reduce the area and, consequently, the thermal noise of photodetectors, while still providing a good collection of photons on photodetector mesas that can help to increase the operating temperature of FPAs. It is shown that this approach can be realized using microconical Si light concentrators with (111) oriented sidewalls, which can be mass-produced by anisotropic wet etching of Si (100) wafers.
View Article and Find Full Text PDFWe report a new approach to preparing a lenticular microlens array (LMA) using polyvinyl chloride (PVC)/dibutyl phthalate (DBP) gels. The PVD/DBP gels coated on a glass substrate form a membrane. With the aid of electrostatic repulsive force, the surface of the membrane can be reconfigured with sinusoidal waves by a DC voltage.
View Article and Find Full Text PDFOpt Express
December 2014
We demonstrate a liquid droplet which can do a reciprocating movement in a cylindrical hole. The droplet in the hole exhibits a lens character. By applying a voltage, the border of the droplet is stretched to expand by the generated dielectric force.
View Article and Find Full Text PDF