Publications by authors named "Boxuan Yu"

A multi-objective optimization method based on an injury prediction model is proposed to address the increasingly prominent safety issues for e-bike riders in Chinese road traffic. This method aims to enhance the protective effect of vehicle front-end for e-bike riders by encompassing a broader range of test scenarios. Initially, large-scale rider injury response data were collected using automated Madymo simulations.

View Article and Find Full Text PDF
Article Synopsis
  • - The COVID-19 pandemic has significantly impacted the global population, with higher fatality rates observed among the elderly and those with pre-existing health conditions, prompting an analysis of various coronavirus studies over five decades.
  • - The research identified a strong interconnectedness among keywords related to immune response, nutrition, and inflammation, leading to the conclusion that the immune system operates through a complex, multilevel framework that includes a "self-destroy and rebuild" strategy.
  • - The findings suggest that the immune system’s response to infections, such as COVID-19, might be influenced by nutrition and the processes involved in cellular regeneration, highlighting the importance of strategies like vaccination to mitigate the pandemic's effects.
View Article and Find Full Text PDF

The human immunity has a pivotal role in nutrition acquisition from the pathogens and damaged body tissue during the SARS-CoV-2 virus infection, which may lead to transient overnutrition in the patients, lead to lipotoxicity and further damage in non-adipose tissues, and cause hyperinflammation and cytokine storm in severe cases of COVID-19. In view of this, high-quality clinical trials on restrictive eating should be designed to investigate the possible benefits of food intake restriction on patients' recovery from COVID-19 disease.

View Article and Find Full Text PDF
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Autophagy

January 2021

Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Human beings have co-evolved with the microorganisms in our environment for millions of years, and have developed into a symbiosis in a mutually beneficial/defensive way. Human beings have significant multifaceted relationships with the diverse microbial community. Apart from the important protective role of microbial community exposure in development of early immunity, millions of inimitable bacterial genes of the diverse microbial community are the indispensable source of essential nutrients like essential amino acids and essential fatty acids for human body.

View Article and Find Full Text PDF

Developing efficient adsorbents for uranium enrichment is of great significance for resource sustainability and environmental safety. This study presents a facile and adaptable post-synthetic strategy to prepare highly efficient uranium adsorbents via engineering the π-conjugated skeletons of homocoupled conjugated microporous polymers (HCMPs). Taking advantage of the diyne units in the π-conjugated skeletons, bis-amidoxime uranophiles, one of the state-of-the-art ligands of uranyl ions, were introduced to the frameworks of HCMPs.

View Article and Find Full Text PDF

This work reports the architecture of a novel class of membrane-supported 1D MOF hollow superstructures, by using the bio-inspired polydopamine (PDA) mediated contra-diffusion synthetic strategy, for facile and efficient separation of uranium in a flow-through mode. PDA chemistry was firstly employed to modify the inner surfaces of the cylindrical pore channels of polycarbonate track-etched membrane (PCTM), thereby regulating the heterogeneous nucleation and interfacial growth of ZIF-8 crystals. ZIF-8 hollow superstructures embedded in membrane matrix with well-defined 1D channels were obtained.

View Article and Find Full Text PDF

Hard carbon attracts wide attentions as the anode for high-energy rechargeable batteries due to its low cost and high theoretical capacities. However, the intrinsically disordered microstructure gives it poor electrical conductivity and unsatisfactory rate performance. Here we report a facile synthesis of N-doped graphitized hard carbon via a simple carbonization and activation of a urea-soaked self-crosslinked Co-alginate for the high-performance anode of lithium/sodium-ion batteries.

View Article and Find Full Text PDF

Oxidant-regulated polymerization of dopamine was exploited, for the first time, for effective surface engineering of the well-defined cylindrical pores of nuclear track-etched membranes (NTEMs) to develop novel catalytic membrane reactor. First, in the presence of a strong oxidant, controlled synthesis of polydopamine (PDA) with tunable particle size was achieved, allowing a homogeneous deposition to the confined pore channels of NTEMs. The PDA interfaces rich in catechol and amine groups provided enhanced hydrophilicity to promote mass transport across the membrane and abundant nucleation sites for formation and stabilization of metallic nanoparticles (NPs).

View Article and Find Full Text PDF