Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway.
View Article and Find Full Text PDFGrapevine downy mildew, caused by the oomycete Plasmopara viticola, is one of the most significant production challenges for the grape and wine industry. P. viticola injects a plethora of effectors into its host cells to disrupt immune processes, but the mechanisms by which these effectors act at the molecular level have not been well characterized.
View Article and Find Full Text PDFGrapevine downy mildew, caused by Plasmopara viticola, is one of the most devastating diseases in viticulture. Plasmopara viticola secretes RxLR effectors to modulate immune responses in grapevine. Here, we report an RxLR effector RxLR50253 from P.
View Article and Find Full Text PDFWild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V.
View Article and Find Full Text PDFGrapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete , for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions.
View Article and Find Full Text PDFPathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P.
View Article and Find Full Text PDF