During the early systemic infection of plant pathogens, individual cells can harbor pathogens at various stages of infection, ranging from absent to abundant. Consequently, the alterations in gene expression levels within these cells in response to the pathogens exhibit significant variability. These variations are pivotal in determining pathogenicity or susceptibility, yet they remain largely unexplored and poorly understood.
View Article and Find Full Text PDFBackground: Establishing a prognostic risk model based on immunological and disulfidptosis signatures enables precise prognosis prediction of oral squamous cell carcinoma (OSCC).
Methods: Differentially expressed immune and disulfidptosis genes were identified in OSCC and normal tissues. We examined the model's clinical applicability and its relationship to immune cell infiltration.
Int J Biol Macromol
February 2025
Introduction: The most common congenital genital abnormality of the urinary system in infants is hypospadias; its frequency is rising to 0.33 percent globally. Surgical reconstruction is the most effective treatment for hypospadias.
View Article and Find Full Text PDFJOURNAL/nrgr/04.03/01300535-202507000-00029/figure1/v/2024-09-09T124005Z/r/image-tiff Autografting is the gold standard for surgical repair of nerve defects > 5 mm in length; however, autografting is associated with potential complications at the nerve donor site. As an alternative, nerve guidance conduits may be used.
View Article and Find Full Text PDFNicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration.
View Article and Find Full Text PDFHow to simultaneously utilize photogenerated electrons and holes still remains a critical challenge in the field of artificial photosynthesis, especially in the process of photocatalytic hydrogen (H) evolution coupled with biomass oxidation to value-added chemicals. Herein, a series-parallel photocatalyst (Cu NPs/CdS/InO) that can intrinsically regulate the transfer of photogenerated carriers is ingeniously designed for photocatalytic H evolution synergized with furfural alcohol (FFA) selective oxidation to furfural (FF). Accordingly, the desired H and FF evolution rates with near 100% selectivity toward FF are achieved on Cu NPs/CdS/InO in a sealed atmospheric system.
View Article and Find Full Text PDFBackground: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen.
View Article and Find Full Text PDFBackground And Aims: Mesenchymal stromal cells (MSCs) a potentially effective disease-modulating therapy for diabetic nephropathy (DN) but their clinical translation has been hampered by incomplete understanding of the optimal timing of administration and in vivo mechanisms of action. This study aimed to elucidate the reno-protective potency and associated mechanisms of single intravenous injections of human umbilical cord-derived MSCs (hUC-MSCs) following shorter and longer durations of diabetes.
Methods: A streptozotocin (STZ)-induced model of diabetes and DN was established in C57BL/6 mice.
Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on β‑catenin‑mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay.
View Article and Find Full Text PDFBackground: Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities.
View Article and Find Full Text PDFBackground And Purpose: Isoxazole 9 (ISX9) is a neurogenesis-promoting small molecule compound that can up-regulate the expression of NeuroD1 and induce differentiation of neuronal, cardiac and islet endocrine progenitors. So far, the molecular mechanisms underlying the action of ISX9 still remain elusive.
Experimental Approach: To identify a novel agonist of the Wnt/β-catenin, a cell-based SuperTOPFlash reporter system was used to screen known-compound libraries.
The roots of legume plant play a crucial role in nitrogen fixation. However, the transcriptomes of different cell types of legume root and their functions remain largely unknown. Here, we performed single-cell RNA sequencing and profiled more than 22,000 single cells from root tips of Lotus japonicus, a model species of legume.
View Article and Find Full Text PDFBackground: Phase I clinical trials play an important role in the follow-up clinical trials and even the drug registration and marketing. However, the screening success ratio in phase I clinical trials is low, and the screening process of the trials consumes a significant amount of human and material resources, but the results are unsatisfactory. At present, there is no large sample data analysis for screening failure in phase I clinical trials.
View Article and Find Full Text PDFWith the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential.
View Article and Find Full Text PDFApolipoprotein E (ApoE) is a lipid-binding protein with ε2, ε3, and ε4 allelic variants in human. The ε4 isoform (ApoE4) is the strongest genetic risk factor for the late-onset form of Alzheimer's disease (AD), and is also associated with multiple neurological disorders, multiple sclerosis, and cerebrovascular disease. Here, induced pluripotent stem cells were derived from the peripheral blood mononuclear cells of a 70-year-old male donor with APOE-ε4/ε4 alleles background to explore pathogenesis and screen potential treatment methods in neurodegenerative diseases.
View Article and Find Full Text PDFIn this study, skin biopsy was collected from a healthy 48-year old male donor with informed consent, and the fibroblasts were isolated from the dermal explant cultures. Here, a human induced pluripotent stem cell (iPSC) line was derived from the fibroblasts using the reprogramming four Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc). The generated iPSCs were integration-free, displayed the normal karyotype, expressed pluripotency markers and demonstrated trilineage differentiation potential in vitro.
View Article and Find Full Text PDFPotocki-Lupski syndrome (PTLS; MIM 610883) is a neurodevelopmental disorder associated with a 3.7 Mb copy number variant (CNV) duplication, locating in chromosome 17p11.2.
View Article and Find Full Text PDFDrought poses a major environmental threat to maize (Zea mays) production worldwide. Since maize is a monoecious plant, maize grain yield is dependent on the synchronous development of male and female inflorescences. When a drought episode occurs during flowering, however, an asynchronism occurs in the anthesis and silking interval (ASI) that results in significant yield losses.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) is a common disease that results in motor and sensory disorders and even lifelong paralysis. The transplantation of stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), or subsequently generated stem/progenitor cells, is predicted to be a promising treatment for SCI. In this study, we aimed to investigate effect of human iPSC-derived neural stem cells (hiPSC-NSCs) and umbilical cord-derived MSCs (huMSCs) in a mouse model of acute SCI.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease.
View Article and Find Full Text PDFBackground: Maize ( L.) is the third most consumed grain in the world and improving maize yield is of great importance of the world food security, especially under global climate change and more frequent severe droughts. Due to the limitation of phenotyping methods, most current studies only focused on the responses of phenotypes on certain key growth stages.
View Article and Find Full Text PDFThe aim of the present study was to assess the effects of sprouty homolog 2 (SPRY2) gene regulation by miR-21 on the occurrence, development and tumor metastasis in multiple myeloma (MM). The miR-21 expression lentiviral vector (LV)-anti-miR-21 and a liposome transfection method were used to screen MM cell lines with stable silent SPRY2. Real-time quantitative polymerase chain reaction (PCR) and western blot analyses were used to detect SPRY2 expression and miR-21 protein expression levels.
View Article and Find Full Text PDFThe aim of the present study was to investigate the expression level of microRNA 21 (miR‑21) in the peripheral blood of patients with multiple myeloma (MM) and to investigate the correlation between miR‑21 and sprouty homolog 2 (SPRY2) gene expression levels in MM. A total of 30 patients with MM, 15 with monoclonal gammopathy of undetermined significance (MGUS) and 20 normal control (NC) outpatients were selected for the detection of miR‑21 and SPRY2 expression using reverse transcription-quantitative polymerase chain reaction. In addition, western blot analysis was performed to detect the expression of miR‑21 and SPRY2 in MM cell lines.
View Article and Find Full Text PDF