Publications by authors named "Bowtell D"

Overexpression studies have suggested that Siah1 proteins may act as effectors of p53-mediated cellular responses and as regulators of mitotic progression. We have tested these hypotheses using Siah gene knockout mice. Siah1a and Siah1b were not induced by activation of endogenous p53 in tissues, primary murine embryonic fibroblasts (MEFs) or thymocytes.

View Article and Find Full Text PDF

TRAF2 serves as a central regulator of the cellular response to stress and cytokines through the regulation of key stress-signaling cascades. Here we demonstrate that wild-type, but not RING mutant, Siah2 targets TRAF2 for ubiquitylation and degradation in vitro. Siah2 mediates equally efficient ubiquitylation of RING mutant TRAF2.

View Article and Find Full Text PDF

The mammalian Siah genes encode highly conserved proteins containing a RING domain. As components of E3 ubiquitin ligase complexes, Siah proteins facilitate the ubiquitination and degradation of diverse protein partners including beta-catenin, N-CoR, and DCC. We used gene targeting in mice to analyze the function of Siah1a during mammalian development and reveal novel roles in growth, viability, and fertility.

View Article and Find Full Text PDF

Members of the Siah (seven in absentia homolog) family of RING domain proteins are components of E3 ubiquitin ligase complexes that catalyze ubiquitination of proteins. We have determined the crystal structure of the substrate-binding domain (SBD) of murine Siah1a to 2.6 A resolution.

View Article and Find Full Text PDF

Many cytokines and growth factors induce transcription of immediate early response genes by activating members of the Signal Transducers and Activators of Transcription (STAT) family. Although significant progress has been made in understanding the events that lead to the activation of STAT proteins, less is known about the regulation of their expression. Here we report that murine embryonic fibroblasts derived from c-Cbl-deficient mice display significantly increased levels of STAT1 and STAT5 protein.

View Article and Find Full Text PDF

Normal apoptosis occurs continuously in the olfactory neuroepithelium of adult vertebrates, making it a useful model for studying neuronal apoptosis. Here we demonstrate that overexpression of the anti-apoptotic Bag-1 gene in olfactory neuronal cells confers a strong resistance to apoptosis. Conversely decreased levels of Bag-1 were found to precede a massive wave of olfactory neuronal apoptosis triggered by synaptic target ablation.

View Article and Find Full Text PDF

The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl.

View Article and Find Full Text PDF

Cells rely on the ability to receive and interpret external signals to regulate growth, differentiation, and death. Positive transduction of these signals to the cytoplasm and nucleus has been extensively characterized, and genetic studies in Drosophila have made major contributions to the understanding of these pathways. Less well understood, but equally important, are the mechanisms underlying signal down-regulation.

View Article and Find Full Text PDF

Induction of wild-type p53 in mouse fibroblasts causes cell cycle arrest at the G(1) phase, whereas coexpression of p53 and the protooncogene c-myc induces apoptosis. Although p53 transcriptional activity generally is required for both pathways, the molecular components mediating p53-dependent apoptosis are not well understood. To identify factors that could mediate p53-induced cell death, we used a comparative RNA differential display procedure.

View Article and Find Full Text PDF

Fyn is a prototype Src-family tyrosine kinase that plays specific roles in neural development, keratinocyte differentiation, and lymphocyte activation, as well as roles redundant with other Src-family kinases. Similar to other Src-family kinases, efficient regulation of Fyn is achieved through intramolecular binding of its SH3 and SH2 domains to conserved regulatory regions. We have investigated the possibility that the tyrosine kinase regulatory protein Cbl provides a complementary mechanism of Fyn regulation.

View Article and Find Full Text PDF

Colony-stimulating factor-1 (CSF-1) activation of the CSF-1 receptor (CSF-1R) causes Cbl protooncoprotein tyrosine phosphorylation, Cbl-CSF-1R association and their simultaneous multiubiquitination at the plasma membrane. The CSF-1R is then rapidly internalized and degraded, whereas Cbl is deubiquitinated in the cytoplasm without being degraded. We have used primary macrophages from gene-targeted mice to study the role of Cbl.

View Article and Find Full Text PDF

Recent studies indicate that c-Cbl and its oncogenic variants can modulate the activity of protein tyrosine kinases. This finding is supported by studies showing that c-Cbl interacts directly with a negative regulatory tyrosine in ZAP-70, and that the levels of tyrosine-phosphorylated ZAP-70 and numerous other proteins are increased in TCR-stimulated thymocytes from c-Cbl-deficient mice. Here, we demonstrate that this enhanced phosphorylation of ZAP-70 and that of two substrates, LAT and SLP-76, is not due to altered protein levels but is the consequence of two separate events.

View Article and Find Full Text PDF

The excitement surrounding microarray technology has been tempered by the limited ability of the general biomedical research community to gain access to it. Given the hardware required for exploitation of the technology is becoming increasingly available, it is an appropriate moment to review options, be they commercially or publically available. Here, we provide a snapshot of the rapidly changing field of microarray-based RNA expression analysis and consider the components and procedures for putting together a complete system.

View Article and Find Full Text PDF

The c-Cbl protein is tyrosine phosphorylated and forms complexes with a wide range of signalling partners in response to various growth factors. How c-Cbl interacts with proteins, such as Grb2, phosphatidylinositol 3-kinase, and phosphorylated receptors, is well understood, but its role in these complexes is unclear. Recently, the Caenorhabditis elegans Cbl homolog, Sli-1, was shown to act as a negative regulator of epidermal growth factor receptor signalling.

View Article and Find Full Text PDF

A fragment consisting of residues 584-1071 of the mouse Son-of-sevenless 1 (mSos1) protein was found to be sufficient for stimulation of the guanine nucleotide exchange of Ras in vitro, which defines the CDC25 homology (CDC25H) domain of mSos1. Furthermore, we found that the CDC25H-domain fragment activated the extracellular signal-regulated protein kinases (ERKs), and was mainly membrane localized, when expressed in unstimulated human embryonic kidney 293 cells. Then, we examined the roles of other mSos1 domains in autoinhibition of the CDC25H-domain functions in unstimulated cellular environments.

View Article and Find Full Text PDF

The protein product of c-cbl proto-oncogene is known to interact with several proteins, including Grb2, Crk and PI3 kinase, and is thought to regulate signalling by many cell surface receptors. The precise function of c-Cbl in these pathways is not clear, although a genetic analysis in Caenorhabditis elegans suggests that c-Cbl is a negative regulator of the epidermal growth factor receptor. Here we describe a yeast two hybrid screen performed with c-Cbl in an attempt to further elucidate its role in signal transduction.

View Article and Find Full Text PDF

Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species.

View Article and Find Full Text PDF

The solution structure of the pleckstrin homology (PH) domain of mouse Son-of-sevenless 1 (mSos1), a guanine nucleotide exchange factor for Ras, was determined by multidimensional NMR spectroscopy. The structure of the mSos1 PH domain involves the fundamental PH fold, consisting of seven beta-strands and one alpha-helix at the C terminus, as determined for the PH domains of other proteins. By contrast, the mSos1 PH domain showed two major characteristic features.

View Article and Find Full Text PDF

The c-Cbl proto-oncogene encodes a multidomain phosphoprotein that has been demonstrated to interact with a wide range of signalling proteins. The biochemical function of c-Cbl in these complexes is, however, unclear. Recent studies with the C.

View Article and Find Full Text PDF

Seven-in-absentia (sina) is epistatic to all other known genes in the sevenless-ras signaling pathway, which mediates R7 photoreceptor formation in the Drosophila eye. The murine genome contains several closely related sina homologues (Siah1A-D, Siah2) that are also likely to participate in ras signaling. As part of a genetic and biochemical analysis of the mammalian Siah genes, we have used gene-specific probes to map the chromosomal positions of each family member.

View Article and Find Full Text PDF

We have investigated the role of the mammalian Son of sevenless 1 (Sos1) protein in growth factor signaling in vivo by generating mice and cell lines that lacked the Sos1 protein. Homozygous null embryos were smaller than normal, died mid-gestation with cardiovascular and yolk sac defects, and their fibroblasts showed reduced mitogen-activated protein kinase activation in response to epidermal growth factor (EGF). An intercross of mice mutant for Sos1 and the EGF receptor (EGFR) demonstrated that a heterozygous mutation in Sos1 dominantly enhanced the phenotype of a weak allele of the EGFR allele (wa-2).

View Article and Find Full Text PDF

Whilst searching for a mammalian homologue of the Drosophila glass gene we cloned a mouse cDNA whose deduced sequence encodes a 614 amino acid (aa) protein with ten Cys2-His2 (C2H2) zinc finger (Zf) motifs. Zfp64 is expressed in all developing and mature mouse tissues examined, except the mouse erythroleukemia (MEL) cell line. Zfp64 maps to the distal region of mouse chromosome 2 close to lens opacity 4 (Lop4), a semidominant cataract mutation.

View Article and Find Full Text PDF

The Son of sevenless (Sos) protein, a guanine nucleotide exchange factor for ras proteins, appears to play a central role in signalling between protein tyrosine kinase receptors and ras. The C-terminal region of Sos binds an adaptor protein, Grb2, which in turn binds to activated receptors including the EGF receptor (EGFR). Although the Sos protein is rapidly phosphorylated following cytokine stimulation, there is no evidence that this alters the enzymatic activity of Sos for ras proteins.

View Article and Find Full Text PDF

The last five years have seen a rapid increase in interest and understanding of signal transduction pathways. While the description of such pathways has become more detailed and complex, a number of consistent findings have emerged. Modular domains, such as SH2 and SH3 domains, are present on a wide variety of proteins and mediate specific protein-protein interactions.

View Article and Find Full Text PDF