Noctiluca scintillans (red) is a widely distributed heterotrophic dinoflagellate and a prominent red tide forming species. This study investigated the effects of Noctiluca blooms on marine microbial diversity and functionality using multi-omics approaches. Our findings revealed significant differences in the community composition of Noctiluca-associated bacteria compared to those associated with autotrophic plankton and free-living bacteria in the surrounding seawater.
View Article and Find Full Text PDFTemperature is a critical environmental factor that affects the cell growth of dinoflagellates and bloom formation. To date, the molecular mechanisms underlying the physiological responses to temperature variations are poorly understood. Here, we applied quantitative proteomic and untargeted metabolomic approaches to investigate protein and metabolite expression profiles of a bloom-forming dinoflagellate at different temperatures.
View Article and Find Full Text PDFHarmful algal blooms (HABs) may quickly travel and inoculate new water bodies via currents and runoff in estuaries. The role of in-situ prokaryotic communities in the re-establishment and growth of inoculated algal blooms remains unknown. A novel on-board incubation experiment was employed to simulate the sudden surge of algal blooms to new estuarine waters and reveal possible outcomes.
View Article and Find Full Text PDFOcean oxygen minimum zones (OMZs) around the global ocean are expanding both horizontally and vertically. Multiple studies have identified the significant influence of anoxic conditions (≤1 μM O) on marine prokaryotic communities and biogeochemical cycling of elements. However, little attention has been paid to the expanding low-oxygen zones where the oxygen level is still above the anoxic level.
View Article and Find Full Text PDFCiliates are pivotal components of the marine microbial food web, exerting profound impacts on oceanic biogeochemical cycling. However, the temporal dynamics of ciliate assemblages on a short time scale in the highly fluctuating estuarine ecosystem remain largely unexplored. We studied changes in the ciliate community during a short time frame in the high salinity waters (>26) of a subtropical estuary.
View Article and Find Full Text PDFCiliates comprise essential components of microzooplankton in diverse marine environments. However, the extent to which environmental variables shape the distribution of planktonic ciliates in complex estuarine systems remains unclear. Here, 52 samples were collected from the Pearl River Estuary, China to reveal the influence of environmental variables on planktonic ciliate communities.
View Article and Find Full Text PDFGlobal warming is considered a major threat to marine ecosystems, which affects bacterioplankton activity, diversity, and community composition. However, few studies focus on the potential effects of warming on bacterioplankton in subtropical coastal waters in different seasons. Here we investigated the influences of warming on growth, grazing and community composition of bacterioplankton in Hong Kong coastal waters during winter and summer via 1-day incubation experiments.
View Article and Find Full Text PDFPlanktonic ciliates have been recognized as major consumers of nano- and picoplankton in pelagic ecosystems, playing pivotal roles in the transfer of matter and energy in the microbial loop. However, due to the difficulties in identification, the species composition of ciliate assemblages, especially for the small, fragile, and naked species that usually dominate the ciliate communities in the oceanic waters, remains largely unknown. In the present study, 22 stations along the transect from Shenzhen (China) to Pohnpei (Micronesia) were sampled for the enumeration of picoplankton and nanoflagellates.
View Article and Find Full Text PDF