Despite genomic sequencing rapidly transforming from being a bench-side tool to a routine procedure in a hospital, there is a noticeable lack of genomic analysis software that supports both clinical and research workflows as well as crowdsourcing. Furthermore, most existing software packages are not forward-compatible in regards to supporting ever-changing diagnostic rules adopted by the genetics community. Regular updates of genomics databases pose challenges for reproducible and traceable automated genetic diagnostics tools.
View Article and Find Full Text PDFAmino acid frequencies in proteins may not be at equilibrium. We consider two possible explanations for the nonzero net residue fluxes in drosophilid proteins. First, protein interiors may have a suboptimal residue composition and be under a selective pressure favoring stability, that is, leading to the loss of polar (and the gain of large) amino acids.
View Article and Find Full Text PDFBackground: Duplicated genes can indefinately persist in genomes if either both copies retain the original function due to dosage benefit (gene conservation), or one of the copies assumes a novel function (neofunctionalization), or both copies become required to perform the function previously accomplished by a single copy (subfunctionalization), or through a combination of these mechanisms. Different models of duplication retention imply different predictions about substitution rates in the coding portion of paralogs and about asymmetry of these rates.
Results: We analyse sequence evolution asymmetry in paralogs present in 12 Drosophila genomes using the nearest non-duplicated orthologous outgroup as a reference.
BMC Genomics
December 2010
Background: Harnessing vast amounts of genomic data in phylogenetic context stemming from massive sequencing of multiple closely related genomes requires new tools and approaches. We present a tool for the genome-wide analysis of frequencies and patterns of amino acid substitutions in multiple alignments of genes' coding regions, and a database of amino acid substitutions in the phylogeny of 12 Drosophila genomes. We illustrate the use of these resources to address three types of evolutionary genomics questions: about fluxes in amino acid composition in proteins, about asymmetries in amino acid substitutions and about patterns of molecular evolution in duplicated genes.
View Article and Find Full Text PDF