Echo planar imaging (EPI), a fast magnetic resonance imaging technique, is a powerful tool in functional neuroimaging studies. However, susceptibility artifacts, which cause misinterpretations of brain functions, are unavoidable distortions in EPI. This paper proposes an end-to-end deep learning framework, named TS-Net, for susceptibility artifact correction (SAC) in a pair of 3D EPI images with reversed phase-encoding directions.
View Article and Find Full Text PDFSource positioning using hybrid angle-of-arrival (AOA) estimation and received signal strength indicator (RSSI) is attractive because no synchronization is required among unknown nodes and anchors. Conventionally, hybrid AOA/RSSI localization combines the same number of these measurements to estimate the agents' locations. However, since AOA estimation requires anchors to be equipped with large antenna arrays and complicated signal processing, this conventional combination makes the wireless sensor network (WSN) complicated.
View Article and Find Full Text PDFEcho planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images.
View Article and Find Full Text PDFThis paper addresses the problem of wall clutter mitigation and image reconstruction for through-wall radar imaging (TWRI) of stationary targets by seeking a model that incorporates low-rank (LR), joint sparsity (JS), and total variation (TV) regularizers. The motivation of the proposed model is that LR regularizer captures the low-dimensional structure of wall clutter; JS guarantees a small fraction of target occupancy and the similarity of sparsity profile among channel images; TV regularizer promotes the spatial continuity of target regions and mitigates background noise. The task of wall clutter mitigation and target image reconstruction is formulated as an optimization problem comprising LR, JS, and TV regularization terms.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2020
Pedestrian lane detection is an important task in many assistive and autonomous navigation systems. This article presents a new approach for pedestrian lane detection in unstructured environments, where the pedestrian lanes can have arbitrary surfaces with no painted markers. In this approach, a hybrid deep learning-Gaussian process (DL-GP) network is proposed to segment a scene image into lane and background regions.
View Article and Find Full Text PDFBackground: Functional magnetic resonance imaging (fMRI) enables non-invasive examination of both the structure and the function of the human brain. The prevalence of high spatial-resolution (sub-millimeter) fMRI has triggered new research on the intra-cortex, such as cortical columns and cortical layers. At present, echo-planar imaging (EPI) is used exclusively to acquire fMRI data; however, susceptibility artifacts are unavoidable.
View Article and Find Full Text PDFStud Health Technol Inform
July 2019
Human genes often, through alternative splicing of pre-messenger RNAs, produce multiple mRNAs and protein isoforms that may have similar or completely different functions. Identification of splice sites is, therefore, crucial to understand the gene structure and variants of mRNA and protein isoforms produced by the primary RNA transcripts. Although many computational methods have been developed to detect the splice sites in humans, this is still substantially a challenging problem and further improvement of the computational model is still foreseeable.
View Article and Find Full Text PDFIEEE Trans Image Process
April 2018
Compressed sensing techniques have been applied to through-the-wall radar imaging (TWRI) and multipolarization TWRI for fast data acquisition and enhanced target localization. The studies so far in this area have either assumed effective wall clutter removal prior to image formation or performed signal estimation, wall clutter mitigation, and image formation independently. This paper proposes a low-rank and sparse imaging model for jointly addressing the problem of wall clutter mitigation and image formation in multichannel TWRI.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2013
This paper addresses the problem of combining multiple radar images of the same scene to produce a more informative composite image. The proposed approach for probabilistic fuzzy logic-based image fusion automatically forms fuzzy membership functions using the Gaussian-Rayleigh mixture distribution. It fuses the input pixel values directly without requiring fuzzification and defuzzification, thereby removing the subjective nature of the existing fuzzy logic methods.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
The accurate left ventricular boundary detection in echocardiographic images allow cardiologists to study and assess cardiomyopathy in patients. Due to the tedious and time consuming manner of manually tracing the borders, deformable models are generally used for left ventricle segmentations. However, most deformable models require a good initialization, which is usually outlined manually by the user.
View Article and Find Full Text PDFWe propose a new hierarchical architecture for visual pattern classification. The new architecture consists of a set of fixed, directional filters and a set of adaptive filters arranged in a cascade structure. The fixed filters are used to extract primitive features such as orientations and edges that are present in a wide range of objects, whereas the adaptive filters can be trained to find complex features that are specific to a given object.
View Article and Find Full Text PDFIn this paper, we propose a new neural architecture for classification of visual patterns that is motivated by the two concepts of image pyramids and local receptive fields. The new architecture, called pyramidal neural network (PyraNet), has a hierarchical structure with two types of processing layers: Pyramidal layers and one-dimensional (1-D) layers. In the new network, nonlinear two-dimensional (2-D) neurons are trained to perform both image feature extraction and dimensionality reduction.
View Article and Find Full Text PDFThis article presents some efficient training algorithms, based on first-order, second-order, and conjugate gradient optimization methods, for a class of convolutional neural networks (CoNNs), known as shunting inhibitory convolution neural networks. Furthermore, a new hybrid method is proposed, which is derived from the principles of Quickprop, Rprop, SuperSAB, and least squares (LS). Experimental results show that the new hybrid method can perform as well as the Levenberg-Marquardt (LM) algorithm, but at a much lower computational cost and less memory storage.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2005
This paper presents a study of three important issues of the color pixel classification approach to skin segmentation: color representation, color quantization, and classification algorithm. Our analysis of several representative color spaces using the Bayesian classifier with the histogram technique shows that skin segmentation based on color pixel classification is largely unaffected by the choice of the color space. However, segmentation performance degrades when only chrominance channels are used in classification.
View Article and Find Full Text PDFThis article presents a new generalized feedforward neural network (GFNN) architecture for pattern classification and regression. The GFNN architecture uses as the basic computing unit a generalized shunting neuron (GSN) model, which includes as special cases the perceptron and the shunting inhibitory neuron. GSNs are capable of forming complex, nonlinear decision boundaries.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2012
A recurrent neural network is presented which performs quadratic optimization subject to bound constraints on each of the optimization variables. The network is shown to be globally convergent, and conditions on the quadratic problem and the network parameters are established under which exponential asymptotic stability is achieved. Through suitable choice of the network parameters, the system of differential equations governing the network activations is preconditioned in order to reduce its sensitivity to noise and to roundoff errors.
View Article and Find Full Text PDF