Publications by authors named "Bouza M"

In this article, we have studied the potential of flexible microtube plasma (FμTP) as ionization source for the liquid chromatography high-resolution mass spectrometry detection of non-easily ionizable pesticides (viz. nonpolar and non-ionizable by acid/basic moieties). Phthalimide-related compounds such as dicofol, dinocap, o-phenylphenol, captan, captafol, folpet and their metabolites were studied.

View Article and Find Full Text PDF

Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes.

View Article and Find Full Text PDF

The present study investigated the potential for solvent-assisted laser desorption coupled with flexible microtube plasma ionization mass spectrometry (SALD-FμTP-MS) as a rapid analytical technique for direct analysis of surface-deposited samples. Paper was used as the demonstrative substrate, and an infrared hand-held laser was employed for sample desorption, aiming to explore cost-effective sampling and analysis methods. SALD-FμTP-MS offers several advantages, particularly for biofluid analysis, including affordability, the ability to analyze low sample volumes (<10 μL), expanded chemical coverage, sample and substrate stability, and in situ analysis and high throughput potential.

View Article and Find Full Text PDF

Dielectric barrier discharges (DBD) are highly versatile plasma sources for forming ions at atmospheric pressure and near ambient temperatures for the rapid, direct, and sensitive analysis of molecules by mass spectrometry (MS). Ambient ion sources should ideally form intact ions, as in-source fragmentation can limit sensitivity, increase spectral complexity, and hinder interpretation. Here, we report the measurement of ion internal energy distributions for the four primary classes of DBD-based ion sources, specifically DBD ionization (DBDI), low-temperature plasma (LTP), flexible microtube plasma (FμTP), and active capillary plasma ionization (ACaPI), in addition to atmospheric pressure chemical ionization (APCI) using para-substituted benzylammonium thermometer ions.

View Article and Find Full Text PDF

Dielectric barrier discharge ionization (DBDI) is a versatile tool for small-molecule mass spectrometry applications, helping cover from polar to low polar molecules. However, the plasma gas-phase interactions are highly complex and have been scarcely investigated. The ionization mechanisms of plasmas have long been assumed to be somewhat similar to atmospheric pressure chemical ionization (APCI).

View Article and Find Full Text PDF

Dielectric barrier discharge ionization has gained attention in the last few years due to its versatility and the vast array of molecules that can be ionized. In this study, we report on the assessment of liquid chromatography coupled to dielectric barrier discharge ionization with mass spectrometry for neutral lipid analysis. A set of different neutral lipid subclasses (triacylglycerides, diacylglycerides, and sterols) were selected for the study.

View Article and Find Full Text PDF

Invited for the cover of this issue are the groups of César Menor-Salván, Facundo Fernández and Nicholas V. Hud at the University of Alcala and the Georgia Institute of Technology. The image depicts the authors contemplating the origin of pterins and guanosine nucleosides from a common precursor, with the art-gallery setting embodying their feeling that the common synthetic pathways of these molecules in both the prebiotic world and in biochemistry is a natural work of (chemical) art.

View Article and Find Full Text PDF

It is widely assumed that the condensation of building blocks into oligomers and polymers was important in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic peptide formation. All abiotic reactions reported thus far for peptide bond formation via thioester intermediates have relied on high energy molecules, which usually suffer from short half-life in aqueous conditions and therefore require constant replenishment.

View Article and Find Full Text PDF

The prebiotic origins of biopolymers and metabolic co-factors are key questions in Origins of Life studies. In a simple warm-little-pond model, using a drying phase to produce a urea-enriched solution, we present a prebiotic synthetic path for the simultaneous formation of neopterins and tetrahydroneopterins, along with purine nucleosides. We show that, in the presence of ribose and in a formylating environment consisting of urea, ammonium formate, and water (UAFW), the formation of neopterins from pyrimidine precursors is robust, while the simultaneous formation of guanosine requires a significantly higher ribose concentration.

View Article and Find Full Text PDF
Article Synopsis
  • This study looked at how burn patients in intensive care are helped with breathing machines, specifically using something called lung-protective ventilation.
  • Researchers checked the breathing settings of 160 patients from 28 hospitals in 16 countries to see if using low volumes of air helped them recover better.
  • They found that most patients were getting this type of ventilation, but it didn't seem to make a big difference in how many days they were off the ventilator or if they were alive 28 days later.
View Article and Find Full Text PDF
Article Synopsis
  • Post-market surveillance is crucial for preventing the consumption of substandard and falsified medicines, and field deployable technologies enable quick screening for these issues.
  • Twelve devices, including various types of spectrometers and chromatographs, were tested on both real and simulated medicines to assess their ability to identify and quantify active pharmaceutical ingredients (APIs), showing high sensitivity for detecting medicines lacking the correct API.
  • While most devices were effective at identifying falsified medicines, their ability to quantify API content varied significantly, with some devices showing particular weaknesses in detecting lower concentrations of active ingredients.
View Article and Find Full Text PDF

Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps.

View Article and Find Full Text PDF

Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and -chain position of lipids in a high-throughput manner.

View Article and Find Full Text PDF

The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes.

View Article and Find Full Text PDF

Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods.

View Article and Find Full Text PDF

Urea appears to be a key intermediate of important prebiotic synthetic pathways. Concentrated pools of urea likely existed on the surface of the early Earth, as urea is synthesized in significant quantities from hydrogen cyanide or cyanamide (widely accepted prebiotic molecules), it has extremely high water solubility, and it can concentrate to form eutectics from aqueous solutions. We propose a model for the origin of a variety of canonical and non-canonical nucleobases, including some known to form supramolecular assemblies that contain Watson-Crick-like base pairs.

View Article and Find Full Text PDF

Efficient ionization is a necessary condition for mass spectrometric analysis, but many compounds fail to ionize well enough to yield sufficient detection limits. Triboelectric nanogenerators (TENG) coupled to nanoelectrospray ionization (nanoESI) mass spectrometry (MS) are a highly effective approach to high sensitivity MS analysis. Here, we report on new, large-area TENG that constructively leverage the relationship between electrode size, created charges, and open-circuit voltage, leading to wider chemical coverage.

View Article and Find Full Text PDF

Rationale: Understanding of the molecular processes that led to the first biomolecules on Earth is one of the key aspects of origins-of-life research. Depsipeptides, or polymers with mixed amide and ester backbones, have been proposed as plausible prebiotic precursors for peptide formation. Chemical characterization of depsipeptides in complex prebiotic-like mixtures should benefit from more efficient ion sources and ultrahigh-resolution mass spectrometry (UHR-MS) for elemental composition elucidation.

View Article and Find Full Text PDF

An improved gas sample introduction interface is developed and characterized for gas chromatography coupling and for direct injection of volatile organic compounds (VOCs), in a pulsed glow discharge (pulsed-GD) ion source coupled to a time of flight mass spectrometer (TOFMS) that is typically used for direct solid analysis. The novel interface allows the introduction of the analytes in the flowing afterglow region of the GD (a few mm away from the negative glow region) to reduce plasma quenching effects. Analyte ion signals are acquired in the temporal afterglow region, where low fragmentation of the molecular species is produced, providing useful qualitative and quantitative molecular information (e.

View Article and Find Full Text PDF

Objective: To determine the optimal moment to perform tracheostomy in a patient requiring anterior cervical fixation.

Methods: A retrospective observational study conducted over an 18-year period included 56 patients who had been admitted to the intensive care unit with acute spinal cord injury and underwent tracheostomy and surgical fixation. The sample was divided into 2 groups: at-risk group (31 patients who had undergone tracheostomy before cervical surgery or <4 days after surgery) and not-at-risk group (25 patients who had undergone tracheostomy >4 days after fixation surgery).

View Article and Find Full Text PDF

Many technologies currently exist that are capable of analyzing the surface of solid samples under ambient or vacuum conditions, but they are typically limited to smooth, planar surfaces. Those few that can be applied to nonplanar surfaces, however, require manual sampling and a high degree of human intervention. Herein, we describe a new platform, Robotic Surface Analysis Mass Spectrometry (RoSA-MS), for direct surface sampling of three-dimensional (3D) objects.

View Article and Find Full Text PDF

Background: Spontaneous breathing trials (SBT) can be exhausting, but the preventive role of rest has never been studied. This study aimed to evaluate whether reconnection to mechanical ventilation (MV) for 1 h after the effort of a successful SBT could reduce the need for reintubation in critically ill patients.

Methods: Randomized multicenter trial conducted in 17 Spanish medical-surgical intensive care units (Oct 2013-Jan 2015).

View Article and Find Full Text PDF

Pulsed glow discharge (PGD) coupled to time of flight mass spectrometry (TOFMS) has been investigated for volatile organic compound (VOC) identification and determination. Optimization of PGD operational conditions (chamber design, applied power, pressure and duty cycle) was performed using acetone and benzene as model compounds. During the different optimizations, molecular, fragment and elemental information were obtained when characteristic GD pulse regions were measured.

View Article and Find Full Text PDF