Publications by authors named "Bouwknecht J"

Inflammatory processes may cause depression in subsets of vulnerable individuals. Inflammation-associated behavioral changes are commonly modelled in rodents by administration of bacterial lipopolysaccharide (LPS). However, the time frame in which immune activation and depressive-like behavior occur is not very clear.

View Article and Find Full Text PDF

Clinical observations indicate that activation of the TNF-α system may contribute to the development of inflammation-associated depression. Here, we tested the hypothesis that systemic upregulation of TNF-α induces neuroinflammation and behavioral changes relevant to depression. We report that a single intraperitoneal injection of TNF-α in mice increased serum and brain levels of the proinflammatory mediators TNF-α, IL-6, and MCP-1, in a dose- and time-dependent manner, but not IL-1β.

View Article and Find Full Text PDF

Neuroinflammation and the accompanying activation of glial cells is an important feature of many neurodegenerative conditions. It is known that factors such as peripheral infections and stress can influence immune processes in the brain. However, the effect of these stressors on astrocyte activation in vivo remains elusive.

View Article and Find Full Text PDF

The review describes a personal journey through 25 years of animal research with a focus on the contribution of rodent models for anxiety and depression to the development of new medicines in a drug discovery environment. Several classic acute models for mood disorders are briefly described as well as chronic stress and disease-induction models. The paper highlights a variety of factors that influence the quality and consistency of behavioral data in a laboratory setting.

View Article and Find Full Text PDF

Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice.

View Article and Find Full Text PDF

The 5-HT(1B) receptor has been implicated in disorders such as depression, anxiety and obsessive-compulsive disorder. In mice lacking the 5-HT(1B) receptor (5-HT(1B) knockout mice), important changes in physiology and behavior exist. In the absence of presynaptic 5-HT(1B) receptor inhibition, chronic SSRI treatment may differentially affect 5-HT(1A) receptor functionality.

View Article and Find Full Text PDF

Stress research has been dominated by a circular type of reasoning that occurrence of a stress response is bad. Consequently, the stimulus is often interpreted as stressful in terms of aversiveness involving uncontrollability and unpredictability, which may have maladaptive and pathological consequences. However, the hypothalamic-pituitary-adrenal (HPA) axis and sympathico-adrenomedullary (SAM) system are not only activated in response of the organism to challenges, but also prepare and support the body for behavior.

View Article and Find Full Text PDF

Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions. Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions.

View Article and Find Full Text PDF

Over the last 15 years, genetically modified mice have added important data to our knowledge on psychiatric diseases including anxiety. This has produced many behavioural publications, partially by non-behaviourists, in which differences between mutants and normal wild-type animals were described. The popularity of these novel tools allowing the study of new mechanisms also, however, led to observations that could not be confirmed.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a hypothalamic peptide that centrally regulates food intake, energy balance and emotion. Interestingly, MCH and melanin-concentrating hormone MCH(1) receptors are distributed in brain areas known to regulate vigilance states. Effects of subcutaneous administration of two selective melanin-concentrating hormone MCH(1) receptor antagonists, labeled A and B were examined over a broad dose range (1, 3, 10, 20, 40 mg/kg) on rat sleep-wake architecture.

View Article and Find Full Text PDF

Lithium has been the standard pharmacological treatment for bipolar disorder over the last 50 years; however, the molecular targets through which lithium exerts its therapeutic effects are still not defined. We characterized the phenotype of mice with a dysfunctional IMPA1 gene (IMPA1-/-) to study the in vivo physiological functions of IMPA1, in general, and more specifically its potential role as a molecular target in mediating lithium-dependent physiological effects. Homozygote IMPA1-/- mice died in utero between days 9.

View Article and Find Full Text PDF

Serotonergic systems arising from the mid-rostrocaudal and caudal dorsal raphe nucleus (DR) have been implicated in the facilitation of anxiety-related behavioral responses to anxiogenic drugs or aversive stimuli. In this study we attempted to determine a threshold to engage serotonergic neurons in the DR following exposure to aversive conditions in an anxiety-related behavioral test. We manipulated the intensity of anxiogenic stimuli in studies of male Wistar rats by leaving them undisturbed (CO), briefly handling them (HA), or exposing them to an open-field arena for 15-min under low-light (LL: 8-13 lx) or high-light (HL: 400-500 lx) conditions.

View Article and Find Full Text PDF

Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala.

View Article and Find Full Text PDF

Lithium is used as treatment for bipolar disorder with particular efficacy in the treatment of mania. Lithium inhibits glycogen synthase kinase 3beta (GSK-3beta) directly or indirectly via stimulation of the kinase Akt-1. We therefore investigated the possibility that transgenic mice overexpressing GSK-3beta could be of relevance to model bipolar disorder.

View Article and Find Full Text PDF

The neural mechanisms underlying anxiety states are believed to involve interactions among forebrain limbic circuits and brainstem serotonergic systems. Consistent with this hypothesis, FG-7142, a partial inverse agonist at the benzodiazepine allosteric site of the GABAA receptor, increases c-Fos expression within a subpopulation of brainstem serotonergic neurons. Paradoxically, FG-7142 has no effect on extracellular serotonin concentrations, as measured using in vivo microdialysis, in certain anxiety-related brain structures.

View Article and Find Full Text PDF

Rett syndrome (RTT) is an autistic spectrum disorder with a known genetic basis. RTT is caused by loss of function mutations in the X-linked gene MECP2 and is characterized by loss of acquired motor, social and language skills in females beginning at 6-18 months of age. MECP2 mutations also cause non-syndromic mental retardation in males and females, and abnormalities of MeCP2 expression in the brain have been found in autistic spectrum disorders.

View Article and Find Full Text PDF

In mammals, stress exposure is frequently associated with an elevated body temperature ['emotional fever', stress-induced hyperthermia (SIH)]. Rectal measurement of body core temperature of the mouse induces a rise of 1-1.5 degrees C over a 10- to 15-min time interval.

View Article and Find Full Text PDF

Serotonin(1A) (5-HT(1A)) receptors are involved in anxiety. This study focuses on the role of genetic factors on the anxiety-related effects of 5-HT(1A) receptor stimulation using both a within subject design. The effects of 5-HT(1A) receptor activation were studied in high- and low-anxiety mice (129S6/SvEvTac (S6) and C57BL/6J (B6), respectively) in behavioral and physiological anxiety-related assays.

View Article and Find Full Text PDF

Over the last decade, many genetically modified mice have been developed as models for psychiatric diseases such as anxiety. Limited availability of such mutant mice highlights the importance of studying the possibility of repeatedly testing the same individuals. We tested mice four times with 1-week intervals with the same dose of the 5-HT(1A) receptor agonist flesinoxan (0-0.

View Article and Find Full Text PDF

To gain a greater insight into the relationship between hyperactivity of the corticotropin-releasing hormone (CRH) system and autonomic and physiological changes associated with chronic stress, we developed a transgenic mouse model of central CRH overproduction. The extent of central and peripheral CRH overexpression, and the amount of bioactive CRH in the hypothalamus were determined in two lines of CRH-overexpressing (CRH-OE) mice. Furthermore, 24 h patterns of body temperature, heart rate, and activity were assessed using radiotelemetry, as well as cumulative water and food consumption and body weight gain over a 7-day period.

View Article and Find Full Text PDF

In order to find better and new treatments for anxiety in humans, a variety of paradigms are used to study anxiety-related processes in rodents. We studied mice in two different anxiety-related assays: the physiological stress-induced hyperthermia (SIH) paradigm and the behavioral light-dark exploration (LD) test. Eight inbred strains (129S6/SvEvTac, 129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ) and one outbred strain (CD1-ICR) were tested in both assays repeatedly.

View Article and Find Full Text PDF

Stress-induced hyperthermia (SIH) in singly housed mice, in which the rectal temperature of a mouse is measured twice with a 10-min interval, enables to study the effects of a drug on the basal (T1) and on the stress-enhanced temperature (T2), 10 min later, using the rectal procedure as stressor. SIH (T2-T1) reflects a stress-induced phenomenon sensitive to stress- or anxiety-modifying effects of drugs. Several benzodiazepine agonists (diazepam, chlordiazepoxide, oxazepam and alprazolam) dose-dependently antagonized SIH either in NMRI mice from two different breeders or in BALB/c mice.

View Article and Find Full Text PDF

5-HT(1B) receptors have a regulatory role in serotonergic activity and influence feeding behavior and body weight. Because the absence of 5-HT(1B) receptors may cause changes in this regulation, body weight was measured in male and female 5-HT(1B) receptor knockout (5-HT(1B) KO) and wildtype (WT) mice from weaning until the age of 30 weeks. In both genders, 5-HT(1B) KO mice had a higher body weight than WT mice (17% and 9%, respectively).

View Article and Find Full Text PDF