Publications by authors named "Boutte C"

Unlabelled: Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of , we identify a connection between and trehalose monomycolate (TMM) transporter in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization.

View Article and Find Full Text PDF

Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of , we identify a connection between and trehalose monomycolate (TMM) transporter in a suppressor screen, and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization.

View Article and Find Full Text PDF

Mycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis.

View Article and Find Full Text PDF

Mycobacteria expand their cell walls at the cell poles in a manner that is not well described at the molecular level. In this study, we identify a new polar factor, PlrA, that is involved in restricting peptidoglycan metabolism to the cell poles in Mycobacterium smegmatis. We establish that only the N-terminal membrane domain of PlrA is essential.

View Article and Find Full Text PDF

The growth of mycobacterial cells requires successful coordination between elongation and septation. However, it is not clear which factors mediate this coordination. Here, we studied the function and post-translational modification of an essential division factor, SepIVA, in Mycobacterium smegmatis.

View Article and Find Full Text PDF

The mycobacterial cell wall is profoundly regulated in response to environmental stresses, and this regulation contributes to antibiotic tolerance. The reversible phosphorylation of different cell wall regulatory proteins is a major mechanism of cell wall regulation. Eleven serine/threonine protein kinases phosphorylate many critical cell wall-related proteins in mycobacteria.

View Article and Find Full Text PDF

β-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit "tolerance," the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood.

View Article and Find Full Text PDF

The paper "Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a nonredundant role for RodA in mycobacteria" by Melzer et al. (E. S.

View Article and Find Full Text PDF

The stringent response is a broadly conserved stress response system that exhibits functional variability across bacterial clades. Here, we characterize the role of the stringent factor Rel in the nontuberculous mycobacterial pathogen, Mycobacterium abscessus (). We found that deletion of does not ablate (p)ppGpp synthesis and that does not provide a survival advantage in several stress conditions or in antibiotic treatment.

View Article and Find Full Text PDF

Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several clinical isolates produced LOS colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS PBP1A contributes to proper cell division in , and its absence induced cell chaining.

View Article and Find Full Text PDF

and its relatives, like many bacteria, have dynamic cell walls that respond to environmental stresses. Modulation of cell wall metabolism in stress is thought to be responsible for decreased permeability and increased tolerance to antibiotics. The signaling systems that control cell wall metabolism under stress, however, are poorly understood.

View Article and Find Full Text PDF

Mycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment.

View Article and Find Full Text PDF

Mycobacterium tuberculosis, the causative agent of tuberculosis, withstands diverse environmental stresses in the host. The periplasmic protease HtrA is required only to survive extreme conditions in most bacteria but is predicted to be essential for normal growth in mycobacteria. We confirm that HtrA is indeed essential in Mycobacterium smegmatis and interacts with another essential protein of unknown function, LppZ.

View Article and Find Full Text PDF

is a biofilm-forming, multidrug-resistant nontuberculous mycobacterial (NTM) pathogen increasingly found in cystic fibrosis patients. Antibiotic treatment for these infections is often unsuccessful, partly due to 's high intrinsic antibiotic resistance. It is not clear whether antibiotic tolerance caused by biofilm formation also contributes to poor treatment outcomes.

View Article and Find Full Text PDF

Septation in bacteria requires coordinated regulation of cell wall biosynthesis and hydrolysis enzymes so that new septal cross-wall can be appropriately constructed without compromising the integrity of the existing cell wall. Bacteria with different modes of growth and different types of cell wall require different regulators to mediate cell growth and division processes. Mycobacteria have both a cell wall structure and a mode of growth that are distinct from well-studied model organisms and use several different regulatory mechanisms.

View Article and Find Full Text PDF

X-linked myotubular myopathy (XLMTM), a severe congenital myopathy, is caused by mutations in the MTM1 gene located on the X chromosome. A majority of affected males die in the early postnatal period, whereas female carriers are believed to be usually asymptomatic. Nevertheless, several affected females have been reported.

View Article and Find Full Text PDF

Unlabelled: For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed.

View Article and Find Full Text PDF

Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability.

View Article and Find Full Text PDF

Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions.

View Article and Find Full Text PDF

Background: Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported.

View Article and Find Full Text PDF

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA.

View Article and Find Full Text PDF

Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles.

View Article and Find Full Text PDF

Background: Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them.

View Article and Find Full Text PDF

Objectives: To (i) evaluate the feasibility and the reliability of a test assessing quadriceps strength, endurance and fatigue in patients with fascioscapulohumeral dystrophy (FSHD) and Charcot-Marie-Tooth disease (CMT), (ii) compare quadriceps function between patients and healthy controls.

Methods: Controls performed the test once and patients twice on two separate visits. It involved progressive sets of 10 isometric contractions each followed by neuromuscular assessments with FNMS.

View Article and Find Full Text PDF

Background: Young African American girls have a high risk of obesity. Online behavior change programs promoting healthy diet and physical activity are convenient and may be effective for reducing disparities related to obesity. This report presents the protocol guiding the design and evaluation of a culturally and developmental appropriate online obesity prevention program for young African American girls.

View Article and Find Full Text PDF