Viral hemorrhagic septicaemia virus (VHSV) has been demonstrated to cause high mortalities in a wide range of teleosts, farmed as well as wild. In Europe, VHSV of genotypes Ib, Id, II, and III have been detected in wild fish, including Atlantic herring , but disease outbreaks have not been observed in Atlantic herring and the effects on wild stocks are not well documented. Here, we have tested two VHSV isolates from herring (genotypes Ib and III, from the western coasts of Norway and Denmark, respectively) in a challenge experiment with herring (mean weight 2.
View Article and Find Full Text PDFDuring the winter of 2013 and 2016, several Croatian fish farms experienced mortalities in the fry of European sea bass, Dicentrarchus labrax. Affected fish showed abnormal swimming behaviour and reduced appetite, and death ensued several days after the onset of clinical signs of disease. Necropsy revealed pale liver, empty digestive tract, distended gall bladder, and hyperaemia and congestion of the meninges.
View Article and Find Full Text PDFPathological manifestations in rainbow trout (Oncorhynchus mykiss) following experimental waterborne infection with Yersinia ruckeri serotype O1 biotype 2 (strain 07111224) were investigated. Rainbow trout were exposed to 8 × 10 CFU/ml of Y. ruckeri by bath for 6 hr, and mortality was then monitored for 22 days post-infection (dpi).
View Article and Find Full Text PDFWe report the first description of a new Rhabdoviridae tentatively named eelpout rhabdovirus (EpRV genus Perhabdovirus). This virus was associated with mass mortalities in eelpout (Zoarces viviparous, Linnaeus) along the Swedish Baltic Sea coast line in 2014. Diseased fish showed signs of central nervous system infection, and brain lesions were confirmed by histology.
View Article and Find Full Text PDFViral haemorrhagic septicaemia (VHS) is a serious disease in several fish species. VHS is caused by the rhabdovirus viral haemorrhagic septicaemia virus (VHSV). To prevent spreading of the pathogen, it is important to use a fast, robust, sensitive and specific diagnostic tool to identify the infected fish.
View Article and Find Full Text PDFIn two separate trials pigs were experimentally infected with Lawsonia intracellularis at 5-6 weeks of age followed by antibiotic treatment and resolution of the primary infection and then re-inoculated at 12-13 weeks of age. A treatment-control group of pigs received the primary infection and antibiotic treatment only, and served as control for the antibiotic treatment of the primary infection. A challenge-control group of pigs received the second inoculation dose only at 12-13 weeks of age to control infectivity of the challenge-dose and susceptibility of pigs to L.
View Article and Find Full Text PDFBackground: Porcine proliferative enteropathy in pigs is caused by the obligate, intracellular bacterium Lawsonia intracellularis. In vitro studies have shown close bacterium-cell interaction followed by cellular uptake of the bacterium within 3 h post inoculation (PI). However, knowledge of the initial in vivo interaction between porcine intestinal epithelium and the bacterium is limited.
View Article and Find Full Text PDFThe intestinal bacterium Lawsonia intracellularis, the cause of proliferative enteropathy (PE) in pigs, is believed to infect mitotically active epithelial cells of the intestinal crypts and then multiply and spread in these cells as they divide. Further spread of infection is thought to occur by shedding of bacteria from infected crypts followed by infection of new crypts. The early stages of the pathogenesis of PE, from 0 to 48 hours post-infection (hpi), have not been studied in vivo.
View Article and Find Full Text PDF