Publications by authors named "Bourry O"

Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of co-infection studies have reported replication interferences between these two viruses.

View Article and Find Full Text PDF

African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989.

View Article and Find Full Text PDF

Background: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages.

View Article and Find Full Text PDF

African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated.

View Article and Find Full Text PDF
Article Synopsis
  • Modified live vaccines (MLVs) for the porcine reproductive and respiratory syndrome virus (PRRSV) can pose safety risks, like reverting to a more virulent form.
  • Three in vivo trials were conducted to study the transmission, reproducibility, and virulence of a specific PRRSV-1 DV strain after limited exposure in pigs.
  • The results indicated that the vaccine strain could adapt to pigs, leading to faster replication, increased transmission, and potential decreases in its intended safety features, along with specific mutations identified as linked to re-adaptation and virulence.
View Article and Find Full Text PDF

In July 2019, a vaccine-derived recombinant Porcine reproductive and respiratory syndrome virus 1 strain (PRRSV-1) (Horsens strain) infected more than 40 Danish sow herds, resulting in severe losses. In the present study, the pathogenicity of the recombinant Horsens strain was assessed and compared to a reference PRRSV-1 strain using a well-characterized experimental model in young SPF pigs. Furthermore, the efficacies of three different PRRSV-1 MLV vaccines to protect pigs against challenge with the recombinant strain were assessed.

View Article and Find Full Text PDF

Modified-live vaccines (MLVs) against porcine reproductive and respiratory syndrome viruses (PRRSVs) are usually administrated to piglets at weaning when swine influenza A virus (swIAV) infections frequently occur. SwIAV infection induces a strong interferon alpha (IFNa) response and IFNa was shown to abrogate PRRSV2 MLV replication and an inherent immune response. In this study, we evaluated the impacts of swIAV infection on the replication of a PRRSV1 MLV (MLV1), post-vaccine immune responses and post-challenge vaccine efficacy at both the systemic and pulmonary levels.

View Article and Find Full Text PDF

Respiratory infections are still a major concern in pigs. Amongst the involved viruses, the porcine reproductive and respiratory syndrome virus (PRRSV) and the swine influenza type A virus (swIAV) have a major impact. These viruses frequently encounter and dual infections are reported.

View Article and Find Full Text PDF

Co-infection by a type 1 modified live vaccine-like strain (MLV1-like) of porcine reproductive and respiratory syndrome virus (PRRSV) and a type 2 porcine circovirus (PCV2) was identified on a French pig farm with post-weaning multisystemic wasting syndrome (PMWS). An in vivo experiment was set up to characterize the virulence level of the MLV1-like strain compared with the parental MLV1 strain, and to assess the impact of PCV2 co-infection on the pathogenicity of both PRRSV strains. Six groups of six pigs each were inoculated only with either one of the two PRRSV strains or with PCV2, or co-inoculated with PCV2 and MLV1 or PCV2 and MLV1-like strains.

View Article and Find Full Text PDF

Modified live virus (MLV) vaccines are commonly used to reduce the impact of porcine reproductive and respiratory syndrome (PRRS) but limited efficacy is achieved in field conditions. Here, we evaluated the impact of maternally-derived neutralizing antibodies (MDNAs) on vaccine efficacy after PRRS virus (PRRSV) challenge. Piglets with low (A-) or high (A+) MDNA levels derived from a commercial pig herd were moved to experimental facilities to be vaccinated (V+) or not (V-) with a PRRSV-1 MLV vaccine at 3 weeks of age (woa).

View Article and Find Full Text PDF

The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge.

View Article and Find Full Text PDF

Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) is a zoonotic pathogen, in particular genotype 3 HEV is mainly transmitted to humans through the consumption of contaminated pork products. This study aimed at describing HEV infection patterns in pig farms and at assessing the impact of immunomodulating co-infections namely Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Circovirus Type 2 (PCV2), as well as other individual factors such as piglets' immunity and litters' characteristics on HEV dynamics. A longitudinal follow-up was conducted in three farrow-to-finish farms known to be HEV infected.

View Article and Find Full Text PDF

In Europe, modified live vaccines (MLV) are commonly used to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, they have been associated with safety issues such as reversion to virulence induced by mutation and/or recombination. On a French pig farm, we identified a field recombinant strain derived from two PRRSV-1 MLV (MLV1).

View Article and Find Full Text PDF

The porcine reproductive and respiratory syndrome virus (PRRSV) is plaguing porcine production. Previously piglets were immunized with a PRRSV-1 commercial modified live virus vaccine (MLV1), a PRRSV-2 MLV (MLV2) or a Western European strain (Finistere: Fini) to assess and compare the protection brought by these strains upon challenge with virulent Lena strain. Lena viremia was reduced in all the immunized groups with a slightly higher level of protection following immunization with Fini.

View Article and Find Full Text PDF

Host miRNAs are known to modulate the cell response to virus infections. We characterized the miRNA-targeted transcriptome of porcine alveolar macrophages (PAMs) at early times after infection with a subtype 1.1 strain of PRRSV (Porcine Reproductive and Respiratory Syndrome Virus).

View Article and Find Full Text PDF

Although hepatitis E virus (HEV) transmission has been demonstrated after consumption of products containing infected pig liver, human cases can be also associated with other pig meat products, such as sausages. Data on HEV viremia and dissemination in muscle meat of infected animals are still sparse, especially during long-term infection. Previously, we have shown that experimental co-infection of pigs with HEV and porcine reproductive and respiratory syndrome virus (PRRSV) lengthens HEV infection up to 49 days and increases the likelihood of the presence of HEV RNA in the liver of the pig at a later stage of infection.

View Article and Find Full Text PDF

Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an arterivirus responsible for highly contagious infection and huge economic losses in pig industry. Two species, PRRSV-1 and PRRSV-2 are distinguished, PRRSV-1 being more prevalent in Europe. PRRSV-1 can further be divided in subtypes.

View Article and Find Full Text PDF

Lung inflammation is frequently involved in respiratory conditions and it is strongly controlled by mononuclear phagocytes (MNP). We previously studied porcine lung MNP and described a new population of cells presenting all the features of alveolar macrophages (AM) except for their parenchymal location, that we named AM-like cells. Herein we showed that AM-like cells are macrophages phagocytosing blood-borne particles, in agreement with a pulmonary intravascular macrophages (PIM) identity.

View Article and Find Full Text PDF

The outputs of epidemiological models are strongly related to the structure of the model and input parameters. The latter are defined by fitting theoretical concepts to actual data derived from field or experimental studies. However, some parameters may remain difficult to estimate and are subject to uncertainty or sensitivity analyses to determine their variation range and their global impact on model outcomes.

View Article and Find Full Text PDF

Liquid vaccine formulations present some disadvantages such as stability problems, cold chain requirement or administration by trained personnel. Vaccine formulated as tablets would present a wide range of progress such as an increase stability that would facilitate the administration, the distribution and the storage of vaccine formulations. This work investigates the possibility to develop a mucosal tablet vaccine for human influenza viruses.

View Article and Find Full Text PDF

This paper provides information on the complete genome sequence of a porcine reproductive and respiratory syndrome virus (PRRSV) strain isolated on a French pig farm which was identified as a recombinant strain from two commercial modified live virus vaccine strains of genotype 1 (VP-046BIS and DV strains).

View Article and Find Full Text PDF

The feasibility of using individual and pen-based oral fluid samples to detect PRRSV antibodies in growing-finishing pigs and group-housed sows was investigated. The diagnostic performances of a commercial oral fluid ELISA (OF-ELISA) and a serum ELISA (SER-ELISA) performed on individual or pooled samples from 5 or 10 pigs and sows was evaluated. The performance of the OF-ELISA was also assessed for pen-based oral fluids.

View Article and Find Full Text PDF

The porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses for the swine industry worldwide. In the past several years, highly pathogenic strains that lead to even greater losses have emerged. For the Western European swine industry, one threat is the possible introduction of Eastern European PRRSV strains (example Lena genotype 1.

View Article and Find Full Text PDF