Background: The functional activity of trimeric guanine-nucleotide-binding proteins (G-proteins) represents an essential step in linking and regulation of the opioid receptor (mu-, delta- and kappa-OR)-initiated signaling pathways. Theoretical basis and/or molecular mechanism(s) of opioid tolerance and addiction proceeding in the central nervous system were not studied in the forebrain cortex of mammals with respect to quantitative analysis of opioid-stimulated trimeric G-protein activity.
Material/methods: G-protein activity was measured in PercollR-purified plasma membranes (PM) isolated from the frontal brain cortex of control and morphine-treated rats by both high-affinity [32P]GTPase and [35S]GTPgammaS binding assays.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) for the alpha-subunit of heterotrimeric G proteins. Several RGS proteins have been found to interact with 14-3-3 proteins. The 14-3-3 protein binding inhibits the GAP function of RGS proteins presumably by blocking their interaction with G(alpha) subunit.
View Article and Find Full Text PDFThis study aimed to determine whether sustained stimulation with thyrotropin-releasing hormone (TRH), a peptide with important physiological functions, can possibly affect expression of plasma membrane proteins in HEK293 cells expressing high levels of TRH receptor and G(11)alpha protein. Our previous experiments using silver-stained two-dimensional polyacrylamide gel electrophoretograms did not reveal any significant changes in an overall composition of membrane microdomain proteins after long-term treatment with TRH of these cells (Matousek et al. 2005 Cell Biochem Biophys 42: 21-40).
View Article and Find Full Text PDFBackground: Heterotrimeric guanine nucleotide-binding proteins (G proteins) play an essential role in linking cell-surface receptors to effector proteins at the plasma membrane. The functional activities of G proteins in various plasma membrane compartments remain to be elucidated.
Material/methods: Plasma membranes from rat cerebral cortex were isolated on Percoll and fractionated by sucrose-density gradient.
The effect of non-ionic detergents on baclofen (GABAB-R agonist)-stimulated G-protein activity was measured as a [(35)S]GTPgammaS binding assay in the plasma membranes (PM) isolated from the brain tissue. The effect was clearly biphasic--a decrease in the activity was followed by an activation maximum and finally, at high concentrations, drastic inhibition of the G-protein activity was noticed. Contrarily, specific radioligand binding to GABAB-receptor was inhibited in the whole range of detergent concentrations step by step, i.
View Article and Find Full Text PDFAgonist-induced subcellular redistribution of G-protein coupled receptors (GPCR) and of trimeric guanine-nucleotide binding regulatory proteins (G-proteins) represent mechanisms of desensitization of hormone response, which have been studied in our laboratory since 1989. This review brings a short summary of these results and also presents information about related literature data covering at least small part of research carried out in this area. We have also mentioned sodium plus potassium dependent adenosine triphosphatase (Na, K-ATPase) and 3H-ouabain binding as useful reference standard of plasma membrane purity in the brain.
View Article and Find Full Text PDFWe monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of G(q/11)alpha proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G(11)alpha. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and G(q/11)alpha was assessed by agonist-stimulated [(35)S]GTPgammaS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations.
View Article and Find Full Text PDFAdenylyl cyclase (AC) in brain cortex from young (12-day-old) rats exhibits markedly higher activity than in adult (90-day-old) animals. In order to find some possibly different regulatory features of AC in these two age groups, here we modulated AC activity by dithiothreitol (DTT), Fe(2+), ascorbic acid and suramin. We did not detect any substantial difference between the effects of all these tested agents on AC activity in cerebrocortical membranes from young and adult rats, and the enzyme activity was always about two-fold higher in the former preparations.
View Article and Find Full Text PDFThe number and affinity of GABA(B) receptors (assayed by the specific antagonist [(3)H]CGP54626A) was unchanged when compared in carefully washed cerebrocortical membranes from young (12-day-old) and adult (90-day-old) rats. In contrast, high-affinity GTPase activity, both basal and baclofen-stimulated was significantly higher (by 45% and 56%, respectively) in adult than in young rats. Similar results were obtained by concomitant determination of agonist (baclofen)-stimulated GTP gamma S binding.
View Article and Find Full Text PDFMany extracellular signals are at the cell surface received by specific receptors, which upon activation transduce information to the appropriate cellular effector molecules via trimeric G proteins. The G protein-mediated cascades ultimately lead to the highly refined regulation of systems such as sensory perception, cell growth, and hormonal regulation. Transmembrane signaling may be seriously deranged in various pathophysiological conditions.
View Article and Find Full Text PDFLow-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively.
View Article and Find Full Text PDFCurrent strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus.
View Article and Find Full Text PDFIn vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots.
View Article and Find Full Text PDFBrain Res Dev Brain Res
January 2002
Maturation of the brain adenylyl cyclase (AC) signalling system was investigated in the developing rat cortex, thalamus and hippocampus. Expression of AC type II, IV and VI measured by Western blot dramatically increased in all tested brain regions during the first 3 weeks after birth and these levels were maintained in adulthood. AC type I did not change during ontogenesis.
View Article and Find Full Text PDFBrain Res Dev Brain Res
January 2002
Developmental changes in the distribution of guanine nucleotide-binding regulatory proteins (G proteins) were investigated in the rat brain during postnatal development. Using a standard or high-resolution urea-SDS-PAGE and specific polyclonal antipeptide antibodies oriented against G(i)alpha1/G(i)alpha2, G(i)alpha3, G(s)alpha, G(o)alpha1/G(o)alpha2, G(q)alpha/G(11)alpha and Gbeta subunit, all these proteins were determined by quantitative immunoblotting in homogenates prepared from cortex, thalamus, hippocampus and pituitary of 1-, 7-, 12-, 18-, 25- and 90-day-old animals. The levels of the majority of G protein alpha subunits, namely G(i)alpha1, G(i)alpha2, G(i)alpha3, G(o)alpha1, G(o)alpha2, G(q)alpha, G(11)alpha and Gbeta, were high already at birth.
View Article and Find Full Text PDFMembrane and cytosolic fractions prepared from ventricular myocardium of young (21-day-old) hypo- or hyperthyroid rats and adult (84-day-old) previously hypo- or hyperthyroid rats were analyzed by immunoblotting with specific anti-G-protein antibodies for the relative content of Gs alpha, Gi alpha/Go alpha, Gq alpha/G11 alpha, and G beta. All tested G protein subunits were present not only in myocardial membranes but were at least partially distributed in the cytosol, except for Go alpha2, and G11 alpha. Cytosolic forms of the individual G proteins represented about 5-60% of total cellular amounts of these proteins.
View Article and Find Full Text PDFIn order to examine whether the differentiation process in brown adipocytes cultivated in primary culture is associated with substantial alterations in the complement of G proteins, the levels of these proteins were investigated with immuno-electrophoretic techniques in membrane preparations from proliferating and differentiated cultured mouse brown adipocytes. We observed that differentiation was associated with a dramatic (more than threefold) increase in the short variant of G(s)alpha protein (G(s)alphaS). The long variant of G(s)alpha (G(s)alphaL), as well as G(i)1alpha, G(i)2alpha, G(q)alpha, G(11)alpha and Gbeta subunit proteins remained unchanged whereas G(i)3alpha protein was decreased.
View Article and Find Full Text PDFLevels of guanine nucleotide-binding proteins G(q)alpha and G(11)alpha, which produce receptor regulation of phospholipase C, were measured immunologically in purified plasma membrane fractions of hamster brown adipose tissue (BAT). This was achieved by immunoblotting with antisera (CQ series) that identify these two polypeptides equally, following separation of the plasma membranes using SDS-PAGE in the presence of 6 M urea, i.e.
View Article and Find Full Text PDFThyroid hormones influence a wide range of physiological responses and the heart is considered a major target organ for triiodothyronine action. In the present study we examined closely the presumed relationship between altered thyroid status in the newborn rat and maturation of the regulatory components of the myocardial hormone-sensitive adenylyl cyclase signaling system. Beta -adrenoceptors and the alpha subunits of the stimulatory (Gs) as well as inhibitory (Gi) G proteins were determined in ventricular myocardium of immature (21-day-old) hypo- or hyperthyroid rats and in adult (84-day-old) previously hypo- or hyperthyroid rats.
View Article and Find Full Text PDFSucrose density gradient purified plasma membranes isolated from brown adipose tissue of cold-acclimated hamsters (4-10 weeks at 0-4 degreesC) were analysed for the content of the short (GsalphaS) and long (GsalphaL) variants of Gsalpha protein (the alpha subunit of the stimulatory G protein) and compared with the membranes isolated from control animals. The relative ratio between the two variants (GsalphaS/GsalphaL) decreased from 0.48 to 0.
View Article and Find Full Text PDF