Publications by authors named "Bouropoulos N"

Conductive hydrogels as wearable sensors have been used for numerous applications in human motion detection, personal healthcare monitoring and other diverse scenarios. However, it remains a challenge to integrate self-healing ability, multiple sensing capabilities, and transparency in one single unit. In this work, multifunctional polyvinyl alcohol (PVA)/Pullulan/Borax conductive hydrogels were fabricated by introducing borate ester bonds and hydrogen bonds.

View Article and Find Full Text PDF

Ensuring children adhere to their prescribed medication can be challenging, particularly when a large number of medicines on the market consist of unpalatable drugs and difficult to swallow dosage forms. Sugar-based oromucosal films are easy to administer dosage forms across all age groups within the paediatric population, as they eliminate the need for swallowing or water intake and can contribute to enhancing palatability and medicine adherence. In the current study, electrospun and 3D printed oromucosal films of chlorpromazine hydrochloride (CHZ), a bitter drug, were developed based on pullulan, a natural polysaccharide, and an array of sweeteners.

View Article and Find Full Text PDF
Article Synopsis
  • This research explores 3D-printed antifungal buccal films (BFs) made from a zein-PVP polymer blend as a possible substitute for traditional antifungal oral gels, highlighting their ease of manufacturing and suitability for children.
  • The films provide sustained release, with 80% of the drug miconazole being released over 2 hours, and disintegrate in under 10 minutes while adhering to buccal tissue.
  • Comprehensive evaluations confirm the films' physicochemical stability, mucoadhesion, and effective antifungal activity, making them a promising option for treating fungal infections in the oral cavity.
View Article and Find Full Text PDF

Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material.

View Article and Find Full Text PDF

Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release.

View Article and Find Full Text PDF

Capsaicin (CAP) has been implicated as a gastroprotective agent in the treatment of peptic ulcers. However, its oral administration is hampered by its poor aqueous solubility and caustic effect at high administered doses. To address these limitations, we describe the development of gastric floating, sustained release electrospun films loaded with CAP.

View Article and Find Full Text PDF

In this work, a sodium alginate-based copolymer grafted by thermoresponsive poly(-isopropylacrylamide) (PNIPAM) chains was used as gelator (Alg-g-PNIPAM) in combination with methylcellulose (MC). It was found that the mechanical properties of the resulting gel could be enhanced by the addition of MC and calcium ions (Ca). The proposed network is formed via a dual crosslinking mechanism including ionic interactions among Ca and carboxyl groups and secondary hydrophobic associations of PNIPAM chains.

View Article and Find Full Text PDF

Buccal foams containing omeprazole (OME) have been developed as potential drug delivery systems for individuals encountering swallowing difficulties, particularly pediatric and geriatric patients. The buccal foams were formulated from lyophilized aqueous gels of maltodextrin, used as a sweetener, combined with various polymers (alginate, chitosan, gelatin, tragacanth) to fine tune their structural, mechanical, and physicochemical properties. Consistent with the requirements for efficient drug delivery across buccal epithelium, the foam comprised of hydroxypropyl methylcellulose and alginate (HPMC-Alg-OME), exhibited moderate hardness and high mucoadhesion resulting to prolonged residence and increased transport of the active across porcine epithelium.

View Article and Find Full Text PDF

Medium Chain Triglyceride (MCT) oil was successfully combined with Glyceryl Monostearate (GMS) and Glyceryl Monoolein (GMO) to form oleogels that were subsequently whipped to form stable oleofoams. The co-crystallization of GMS and GMO at a ratio of 20:1, 20:2.5, and 20:5 within MCT oil was studied through Differential Scanning Calorimetry (DSC), X-ray Diffraction analysis (XRD), rheological analysis, Fluorescence Recovery after Photobleaching (FRAP), Fourier Transform Infrared Spectroscopy (FTIR), and polarized microscopy.

View Article and Find Full Text PDF

Periodontal disease is associated with chronic inflammation and destruction of the soft and hard tissues in the periodontium. Scaffolds that would enable cell attachment and proliferation while at the same time providing a local sustained anti-inflammatory action would be beneficial in restoring or reversing disease progression. In the current study, silk sericin, a natural protein derived from the silkworm cocoons, was electrospun with poly lactide-co-glycolic acid (PLGA) and ketoprofen, and the composite scaffolds were assessed for their physicochemical and mechanical properties, as well as their biocompatibility and in vitro anti-inflammatory action.

View Article and Find Full Text PDF

In an effort to combine a child-friendly dosage form for medication administration in hospitalized pediatric patients and a user-friendly automated process for its preparation by health-care providers, the current study proposes a method for drug administration with breakfast using semi-solid extrusion 3D printing. Cereal was used as the platform carrier of the hydrophobic ibuprofen and the hydrophilic paracetamol to develop the drug loaded cereal ink. Rheological analysis was performed to identify the cereal ink with optimum viscosity for extrusion printing.

View Article and Find Full Text PDF

Treatment failure of endodontic infections and their concurrent inflammations is commonly associated with microbial persistence and reinfection, also stemming from the anatomical restrictions of the root canal system. Aiming to address the shortcomings of current treatment options, a fast-disintegrating nanofibrous film was developed for the intracanal coadministration of an antimicrobial (ZnO nanoparticles) and an anti-inflammatory (ketoprofen) agent. The electrospun films were fabricated based on polymers that dissolve rapidly to constitute the actives readily available at the site of action, aiming to eliminate both microbial infection and inflammation.

View Article and Find Full Text PDF

Controlled-release tablets and rectal suppositories of sulfasalazine (SLF) and hydrocortisone 21-acetate (HA) were prepared as recommended dosage forms for the treatment of acute episodes of ulcerative colitis, in patients who do not respond to monotherapy. A High-Performance Liquid Chromatography (HPLC) Diode-array method with a gradient elution mobile phase was developed to evaluate the production quality of both formulations (assay and dissolution profiles in gastric and intestinal fluids). Method's validation was carried out providing good linearity (r ≥ 0.

View Article and Find Full Text PDF

Fibrillar structures derived from plant or animal origin have long been a source of inspiration for the design of new biomaterials. The Asn-Gly-Ile-Trp-Tyr-NH (NGIWY-amide) pentapeptide, isolated from the sea cucumber , which spontaneously self-assembles in water to form hydrogel, pertains to this category. In this study, we evaluated this ultra-short cosmetic bioinspired peptide as vector for local drug delivery applications.

View Article and Find Full Text PDF

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the β-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated.

View Article and Find Full Text PDF

Objectives: The development of age-appropriate dosage forms is essential for effective pharmacotherapy, especially when long-term drug treatment is required, as in the case of latent tuberculosis infection treatment with up to 9 months of daily isoniazid (ISO). Herein, we describe the fabrication of starch-based soft dosage forms of ISO using semi-solid extrusion (SSE) 3D printing.

Methods: Corn starch was used for ink preparation using ISO as model drug.

View Article and Find Full Text PDF

In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and scaling up theophylline-nicotinamide (THL-NIC) cocrystals using a method called hot-melt extrusion (HME).
  • Key processing parameters included barrel temperature, feed rate, and screw speed, with a residence time of about 47 seconds for the larger batches.
  • Characterization methods showed the cocrystals had a purity of 98.6%, and their quality was stable even under challenging conditions.
View Article and Find Full Text PDF

Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state.

View Article and Find Full Text PDF

Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.

View Article and Find Full Text PDF

Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 μm for Eudragit L-100 fibers.

View Article and Find Full Text PDF

Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities.

View Article and Find Full Text PDF

Thin Titanium films were fabricated on quartz substrates by radio frequency magnetron sputtering under high vacuum. Subsequent annealing at temperatures of 600 ∘C in air resulted in single-phase TiO2 with the structure of rutile, as X-ray diffraction experiment demonstrates. Atomic-force microscopy images verify the high crystalline quality and allow us to determine the grain size even for ultrathin TiO2 films.

View Article and Find Full Text PDF

Achieving strong adhesion in wet environments remains a technological challenge in biomedical applications demanding biocompatibility. Attention for adhesive motifs meeting such demands has largely been focused on marine organisms. However, bioadhesion to inorganic surfaces is also present in the human body, in the hard tissues of teeth and bones, and is mediated through serines (S).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully created buccal films using inkjet printing to incorporate two vitamins: thiamine hydrochloride (THCl) and nicotinic acid (NA).
  • They conducted solubility and rheological studies to ensure the effective mixing of these vitamins with solvents, leading to a higher solubility that supports the production of multiple doses.
  • The study found that the printed films demonstrated a rapid release of vitamins within 10 minutes, and higher vitamin concentrations enhanced the absorption effectiveness when tested in vitro.
View Article and Find Full Text PDF