Crit Rev Food Sci Nutr
December 2024
Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken.
View Article and Find Full Text PDFPancreatic lipase related-protein 2 (PLRP2) exhibits remarkable galactolipase and phospholipase A1 activities, which depend greatly on the supramolecular organization of the substrates and the presence of surfactant molecules such as bile salts. The objective of the study was to understand the modulation of the adsorption mechanisms and enzymatic activity of Guinea pig PLRP2 (gPLRP2), by the physical environment of the enzyme and the physical state of its substrate. Langmuir monolayers were used to reproduce homogeneous and heterogeneous photosynthetic model membranes containing galactolipids (GL), and/or phospholipids (PL), and/or phytosterols (pS), presenting uncharged or charged interfaces.
View Article and Find Full Text PDFThe structural behavior of model assemblies composed of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two main galactolipids found in plants, was investigated at the air/water interface and in aqueous dispersion. To approach the composition of the natural photosynthetic membranes, tunable Langmuir model membrane of galactolipids (GL) were used, and were complexified to form either heterogenous binary or ternary assemblies of GL, phospholipids (PL), and phytosterols (pS). The impact of pS, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or both on the structural properties of GL membrane was studied.
View Article and Find Full Text PDFMost lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated.
View Article and Find Full Text PDFOil bodies (OB), the form of triacylglycerol storage in seeds, are interesting natural assemblies for nutritional applications. In walnuts, OB contain an important amount of polyunsaturated fatty acids that could be interesting food ingredients but may be prone to oxidation. The oxidative and interfacial behavior of walnut OB, either minimally-processed or after processing, were compared with processed complex walnut juice.
View Article and Find Full Text PDFThe aim of the present study was to determine to what extent the food matrix could affect the release of docosahexaenoic acid (DHA) during digestion and its incorporation into systemic circulation. In this aim, three DHA-enriched egg products having the same composition but different structure were developed: omelet, hard-boiled egg, and mousse. Then, nine pigs fitted with T-shape cannulas at duodenal level and a jugular venous catheter were fed with the DHA-enriched egg products, and duodenal effluents and plasma were collected throughout the postprandial period.
View Article and Find Full Text PDFCurr Opin Clin Nutr Metab Care
November 2020
Purpose Of Review: The impact of dietary lipids on cardiometabolic health was mainly studied considering their fatty acid composition. This review aims to present the recent change in paradigm whereby the food matrix, the molecular and supramolecular structures of dietary lipids modulate their digestive fate and cardiometabolic impact.
Recent Findings: Epidemiological studies have reported that the metabolic impact of full-fat dairy products is better than predictable upon saturated fatty acid richness.
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion.
View Article and Find Full Text PDFMilk fat globule membrane conditions the reactivity and enzymatic susceptibility of milk lipids. The use of bovine membrane extracts to make infant formulas more biomimetic of human milk has been suggested recently. A comparison of the physico-chemical behavior of human and bovine milk membrane extracts and their interaction with gastric lipase is here undertaken using biophysical tools.
View Article and Find Full Text PDFThe lipids and some surfactants present in oral lipid-based drug delivery systems are potential substrates for the various lipases involved in gastrointestinal (GI) lipolysis. The levels of these enzymes, together with pH and biliairy secretion, are important parameters that condition the fate of lipid-based formulations (LBF) and the dispersion, solubilization and absorption of lipophilic drugs in the GI tract. Since in vitro methods of digestion are now combined with dissolution assays for a better assessment of LBF performance, it is essential to have a basic knowledge on lipase, pH and bile acid (BA) levels in vivo to develop relevant in vitro models.
View Article and Find Full Text PDFHolder pasteurization (62.5 °C, 30 min) of human milk denatures beneficial proteins. The present paper aimed to assess whether this can affect the kinetics of peptide release during digestion at the preterm stage.
View Article and Find Full Text PDFBackground & Aims: It has been suggested that homogenization of Holder-pasteurized human milk (PHM) could improve fat absorption and weight gain in preterm infants, but the impact on the PHM digestive kinetics has never been studied. Our objective was to determine the impact of PHM homogenization on gastric digestion in preterm infants.
Methods: In a randomized controlled trial, eight hospitalized tube-fed preterm infants were their own control to compare the gastric digestion of PHM and of homogenized PHM (PHHM).
Regardless of the applications: therapeutic vehicle or membrane model to mimic complex biological systems; it is of a great importance to develop simplified, reproducible and rapid model assays allowing for a relevant assessment of the liposomal membrane oxidation and therefore antioxidant activity of selected molecules. Here, we describe a new and high-throughput assay that we called "Vesicle Conjugated Autoxidizable Triene (VesiCAT)". It is based on specific UV absorbance spectral properties of a new phospholipid probe, synthesized with natural conjugated eleostearic acid extracted from Tung oil.
View Article and Find Full Text PDFBioactive lipids of the milk fat globule membrane become concentrated in two co-products of the butter industry, buttermilk and butterserum. Their lipid composition is detailed here with special emphasis on sphingolipid composition of nutritional interest, determined using GC, HPLC and tandem mass spectrometry. Butterserum was 2.
View Article and Find Full Text PDFIn vitro alternatives to clinical trials are used for studying human food digestion. For simulating infant digestion, only a few models, lacking physiological relevance, are available. Thanks to an extensive literature review of the in vivo infant digestive conditions, a gastrointestinal static in vitro model was developed for infants born at term and aged 28days.
View Article and Find Full Text PDFThe access to kinetic parameters of lipolytic enzyme adsorption onto lipids is essential for a better understanding of the overall catalytic process carried out by these interfacial enzymes. Gastric lipase, for instance, shows an apparent optimum activity on triglycerides (TAG) at acidic pH, which is controlled by its pH-dependent adsorption at lipid-water interfaces. Since gastric lipase acts on TAG droplets covered by phospholipids, but does not hydrolyze these lipids, phospholipid monolayers spread at the air-water interfaces can be used as biomimetic interfaces to study lipase adsorption and penetration through the phospholipid layer, independently from the catalytic activity.
View Article and Find Full Text PDFBackground: Holder pasteurization has been reported to modify human milk composition and structure by inactivating bile salt-stimulated lipase (BSSL) and partially denaturing some of its proteins, potentially affecting its subsequent digestion.
Objective: We sought to determine the impact of human milk pasteurization on gastric digestion (particularly for proteins and lipids) in preterm infants who were fed their mothers' own milk either raw or pasteurized.
Design: In a randomized controlled trial, 12 hospitalized tube-fed preterm infants were their own control group in comparing the gastric digestion of raw human milk (RHM) with pasteurized human milk (PHM).
Purpose: Although composition of infant formula has been significantly improved during the last decade, major differences with the composition and structure of breast milk still remain and might affect nutrient digestion and gut biology. We hypothesized that the incorporation of dairy fat in infant formulas could modify their physiological impacts by making their composition closer to that of human milk. The effect of milk fat and milk fat globule membrane (MFGM) fragments in infant formulas on gut digestion, mucosal immunity and microbiota composition was evaluated.
View Article and Find Full Text PDFHuman milk feeding is an important recommendation for preterm newborns considering their vulnerability and digestive immaturity. Holder pasteurization (62.5°C, 30min) applied in milk banks modifies its biological quality and its microstructure.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2016
Holder pasteurization (62.5°C, 30 min) ensures sanitary quality of donor's human milk but also denatures beneficial proteins. Understanding whether this further impacts the kinetics of peptide release during gastrointestinal digestion of human milk was the aim of the present paper.
View Article and Find Full Text PDFBackground: Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking.
Objective: We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro.
Methods: Female Swiss mice were gavaged with 150 μL of an oil-in-water emulsion stabilized with 5.
Milk lipids supply most of the calories necessary for newborn growth in maternal milk or infant formulas. The chemical composition of infant formulas has been optimized but not the structure of the emulsion. There is still a major difference between the native emulsions of milk fat globules and processed submicronic emulsions in infant formulas.
View Article and Find Full Text PDFSimulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g.
View Article and Find Full Text PDF