Publications by authors named "Bourguet W"

The study of the adverse effects of chemical substances on living organisms is an old and intense field of research. However, toxicological and environmental health sciences have long been dominated by descriptive approaches that enable associations or correlations but relatively few robust causal links and molecular mechanisms. Recent achievements have shown that structural biology approaches can bring this added value to the field.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR.

View Article and Find Full Text PDF

In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals.

View Article and Find Full Text PDF

2,4-Di-tert-butylphenol (2,4-DTBP) is an important commercial antioxidant and a toxic natural secondary metabolite that has been detected in humans. However, there is scant information regarding its toxicological effects. We asked whether 2,4-DTBP is a potential obesogen.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.

View Article and Find Full Text PDF

Retinoid X receptors (RXRα, β, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors.

View Article and Find Full Text PDF

Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models.

View Article and Find Full Text PDF

Background: Lipid species are accurately distributed in the eukaryotic cell so that organelle and plasma membranes have an adequate lipid composition to support numerous cellular functions. In the plasma membrane, a precise regulation of the level of lipids such as phosphatidylserine, PI(4)P, and PI(4,5)P, is critical for maintaining the signaling competence of the cell. Several lipid transfer proteins of the ORP/Osh family contribute to this fine-tuning by delivering PS, synthesized in the endoplasmic reticulum, to the plasma membrane in exchange for PI(4)P.

View Article and Find Full Text PDF

Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs.

View Article and Find Full Text PDF

The nuclear receptor pregnane X receptor (PXR) is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism in mammals. Many studies suggest that PXR may play a similar role in fish. The interaction of human PXR (hPXR) with a variety of structurally diverse endogenous and exogenous chemicals is well described.

View Article and Find Full Text PDF

Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) form heterodimers that activate target gene transcription by recruiting co-activator complexes in response to ligand binding. The nuclear receptor (NR) co-activator TIF2 mediates this recruitment by interacting with the ligand-binding domain (LBD) of NRs trough the nuclear receptor interaction domain (TIF2) containing three highly conserved α-helical LxxLL motifs (NR-boxes). The precise binding mode of this domain to RXR/RAR is not clear due to the disordered nature of TIF2.

View Article and Find Full Text PDF

Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) and Nuclear Receptors (NRs) are two signaling machineries that are involved in major physiological processes and, as a consequence, in a substantial number of diseases. Therefore, they actually represent two major targets for drugs with potential applications in almost all public health issues. Full exploitation of these targets for therapeutic purposes nevertheless requires opening original avenues in drug design, and this in turn implies a better understanding of the molecular mechanisms underlying their functioning.

View Article and Find Full Text PDF

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors.

View Article and Find Full Text PDF

Prostate cancer is the most commonly diagnosed malignancy in men. Its growth mainly relies on the activity of the androgen receptor (AR), justifying the use of androgen deprivation therapy as a gold standard treatment for the metastatic disease. Inhibition of the androgen axis using second generation antagonists has improved patients' survival, but is systematically confronted to resistance mechanisms, leading to a median survival that does not exceed 5 years.

View Article and Find Full Text PDF

The transcription factor peroxisome proliferator-activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre-eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand-binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARG ) and on fibroblast cell migration (PPARG /PPARG ).

View Article and Find Full Text PDF

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs.

View Article and Find Full Text PDF

The three retinoic acid receptor subtypes (RARα, RARβ and RARγ) act as ligand-inducible transcription factors binding to DNA regulatory elements in the promoter regions of target genes by forming heterodimers with the retinoid X receptors (RXRα, RXRβ and RXRγ). They act as ligand-dependent transcription factors that regulate a large variety of genes involved in cell growth, differentiation, survival and death. The (patho)physiological functions of RAR-RXR heterodimers rely on a dynamic sequence of protein-protein interactions, many of which being modulated by natural (retinoic acid) or synthetic ligands.

View Article and Find Full Text PDF

Resistance to thyroid hormone alpha (RTHα) is a rare and under-recognized genetic disease caused by mutations of , the gene encoding thyroid hormone receptor α1 (TRα1). We report here two novel missense mutations (M259T, T273A) in patients with RTHα. We combined biochemical and cellular assays with modeling to assess the capacity of mutant TRα1 to bind triiodothyronine (T3), to heterodimerize with RXR, to interact with transcriptional coregulators, and to transduce a T3 transcriptional response.

View Article and Find Full Text PDF

The three subtypes (α, β, and γ) of the retinoic acid receptor (RAR) are ligand-dependent transcription factors that mediate retinoic acid signaling by forming heterodimers with the retinoid X receptor (RXR). Heterodimers are functional units that bind ligands (retinoids), transcriptional co-regulators and DNA, to regulate gene networks controlling cell growth, differentiation, and death. Using biochemical, crystallographic, and cellular approaches, we have set out to explore the spectrum of possibilities to regulate RXR-RAR heterodimer-dependent transcription through various pharmacological classes of RAR- and RXR- specific ligands, alone or in combination.

View Article and Find Full Text PDF
Article Synopsis
  • Virtual screening (VS) is essential for drug development, but accurately estimating binding affinities for targets like Estrogen Receptor alpha (ERα) remains challenging and requires specific adjustments.
  • A new integrated approach using both Structure-Based (SBVS) and Ligand-Based VS is proposed, showing that structure-based features significantly outperform ligand-based ones in predicting binding affinities.
  • The developed prediction tool is publicly available on the @TOME server, allowing users to upload ligand datasets for docking and affinity predictions.
View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are a broad class of molecules present in our environment that are suspected to cause adverse effects in the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous ligands. The characterization of the harmful interaction between environmental compounds and their potential cellular targets and the development of robust in vivo, in vitro, and in silico screening methods are important for assessment of the toxic potential of large numbers of chemicals. In this context, computer-aided technologies that will allow for activity prediction of endocrine disruptors and environmental risk assessments are being developed.

View Article and Find Full Text PDF

In its unliganded form, the retinoic acid receptor (RAR) in heterodimer with the retinoid X receptor (RXR) exerts a strong repressive activity facilitated by the recruitment of transcriptional corepressors in the promoter region of target genes. By integrating complementary structural, biophysical, and computational information, we demonstrate that intrinsic disorder is a required feature for the precise regulation of RAR activity. We show that structural dynamics of RAR and RXR H12 regions is an essential mechanism for RAR regulation.

View Article and Find Full Text PDF