Publications by authors named "Bourgeois B"

FOXOs are highly dynamic transcription factors consisting of one conserved DNA-binding domain (forkhead domain) as well as intrinsically disordered regions (IDRs) at the N- and C-termini. These IDRs are essential and regulate transcriptional activity of FOXOs by serving as interaction platform for cofactors. Furthermore, the IDRs are involved in intra- and intermolecular homeotypic and heterotypic interactions between FOXOs and in turn mediate FOXO auto-inhibition and condensate formation.

View Article and Find Full Text PDF

The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * A study showed that rabbits lacking B vitamins experienced significant vascular damage when given Hcy, despite low cholesterol levels, including issues like collagen disorganization and impaired vascular reactivity.
  • * Findings indicate that Hcy promotes atherogenic changes in the aorta, suggesting its harmful effects extend beyond just high cholesterol conditions.
View Article and Find Full Text PDF
Article Synopsis
  • Alcohol misuse in people with HIV and chronic binge alcohol in SIV-infected macaques lead to increased physical frailty and impaired muscle function, with specific microRNAs (myomiRs) involved in this impairment.
  • Previous research found that myomiRs are expressed differently in muscle from alcohol-administered macaques, impacting the differentiation of muscle stem cells (myoblasts).
  • The current study showed that delivering extracellular vesicle (EV)-carried miR-206 improves myoblast differentiation and muscle cell growth, suggesting EVs could be a potential treatment to enhance muscle function in individuals affected by alcohol-related issues.
View Article and Find Full Text PDF

Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51).

View Article and Find Full Text PDF

The lack of a detailed mechanistic understanding for plasmon-mediated charge transfer at metal-semiconductor interfaces severely limits the design of efficient photovoltaic and photocatalytic devices. A major remaining question is the relative contribution from indirect transfer of hot electrons generated by plasmon decay in the metal to the semiconductor compared to direct metal-to-semiconductor interfacial charge transfer. Here, we demonstrate an overall electron transfer efficiency of 44 ± 3% from gold nanorods to titanium oxide shells when excited on resonance.

View Article and Find Full Text PDF

Alcohol misuse and HIV independently induce myopathy. We previously showed that chronic binge alcohol (CBA) administration, with or without simian immunodeficiency virus (SIV), decreases differentiation capacity of male rhesus macaque myoblasts. We hypothesized that short-term alcohol and CBA/SIV would synergistically decrease differentiation capacity and impair bioenergetic parameters in female macaque myoblasts.

View Article and Find Full Text PDF

Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells.

View Article and Find Full Text PDF

The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites.

View Article and Find Full Text PDF

Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these.

View Article and Find Full Text PDF
Article Synopsis
  • Alcohol-related myopathy occurs early in alcohol users and worsens with long-term abuse, affecting skeletal muscle mass and function through various complex mechanisms.
  • This evidence-based review analyzed peer-reviewed studies from January 2012 to November 2022, focusing on the acute and chronic impacts of alcohol on skeletal muscle, yielding 96 relevant research papers out of 708 initial studies.
  • The findings highlight that alcohol use reduces protein synthesis, increases protein degradation, and disrupts mitochondrial functions, but there is a lack of comprehensive studies on the specific mechanisms involved.
View Article and Find Full Text PDF

Background: Effective antiretroviral therapy (ART) in people living with HIV (PLWH) has improved life expectancy and increased risk of age-associated cardiometabolic comorbidities. At-risk alcohol use is more frequent among PLWH and increases the risk of health challenges. PLWH with at-risk alcohol use are more likely to meet criteria for prediabetes/diabetes and this is associated with impaired whole-body glucose-insulin dynamics.

View Article and Find Full Text PDF

There is a pressing global need to increase the use of renewable energy sources and limit greenhouse gas emissions. Towards this goal, highly efficient and molecularly selective chemical processes that operate under mild conditions are critical. Plasmonic photocatalysis uses optically-resonant metallic nanoparticles and their resulting plasmonic, electronic, and phononic light-matter interactions to drive chemical reactions.

View Article and Find Full Text PDF

Molecular diagnostics in healthcare relies increasingly on genomic and transcriptomic methodologies and requires appropriate tissue specimens from which nucleic acids (NA) of sufficiently high quality can be obtained. Besides the duration of ischemia and fixation type, NA quality depends on a variety of other pre-analytical parameters, such as storage conditions and duration. It has been discussed that the improper dehydration of tissue during processing influences the quality of NAs and the shelf life of fixed tissue.

View Article and Find Full Text PDF

Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential.

View Article and Find Full Text PDF

Lyme borreliosis is caused by the spirochete Borrelia burgdorferi and is transmitted among vertebrate hosts by Ixodes scapularis ticks in eastern North America. Treatment with topical corticosteroids increases the abundance of B. burgdorferi in the skin of lab mice that have been experimentally infected via needle inoculation.

View Article and Find Full Text PDF

Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress.

View Article and Find Full Text PDF

L-ornithine L-aspartate (LOLA) is administered as a therapeutic and/or preventive strategy against hepatic encephalopathy either intravenously or orally in patients with liver cirrhosis. Here, we analyzed how LOLA influences the microbiome and metabolome of patients with liver cirrhosis. We retrospectively analyzed the stool microbiome, stool, urine and serum metabolome as well as markers for gut permeability, inflammation and muscle metabolism of 15 cirrhosis patients treated orally with LOLA for at least one month and 15 propensity-score-matched cirrhosis patients without LOLA.

View Article and Find Full Text PDF

Millions of people worldwide are affected by neurodegenerative diseases (NDs), and to date, no effective treatment has been reported. The hallmark of these diseases is the formation of pathological aggregates and fibrils in neural cells. Many studies have reported that catechins, polyphenolic compounds found in a variety of plants, can directly interact with amyloidogenic proteins, prevent the formation of toxic aggregates, and in turn play neuroprotective roles.

View Article and Find Full Text PDF

A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information.

View Article and Find Full Text PDF

Palladium's strong reactivity and absorption affinity to H makes it a prime material for hydrogen-based technologies. Alloying of Pd has been used to tune its mechanical stability, catalytic activity, and absorption thermodynamics. However, atomistic mechanisms of hydrogen dissociation and intercalation are informed predominantly by theoretical calculations, owing to the difficulty in imaging dynamic metal-gas interactions at the atomic scale.

View Article and Find Full Text PDF

People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH.

View Article and Find Full Text PDF

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the presence of poly-PR/GR dipeptide repeats, which are encoded by the chromosome 9 open reading frame 72 (C9orf72) gene. Recently, it was shown that poly-PR/GR alters chromatin accessibility, which results in the stabilization and enhancement of transcriptional activity of the tumor suppressor p53 in several neurodegenerative disease models. A reduction in p53 protein levels protects against poly-PR and partially against poly-GR neurotoxicity in cells.

View Article and Find Full Text PDF

Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation.

View Article and Find Full Text PDF