Publications by authors named "Bourg N"

Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.

View Article and Find Full Text PDF

Physalia spp., or Man-of-War, drifts in tropical and subtropical waters, transported by ocean surface conditions. Its unique drifting behavior, influenced by dimorphism (left or right-handedness), complicates stranding predictions.

View Article and Find Full Text PDF

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species, a phenomenon known as conspecific negative density dependence (CNDD). A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests, which increases community stabilization, species coexistence and the diversity of local tree species. Previous analyses supporting such a latitudinal gradient in CNDD have suffered from methodological limitations related to the use of static data.

View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) can reach sub-50 nm resolution using techniques such as stochastic optical reconstruction microscopy (STORM) or DNA-point accumulation for imaging in nanoscale topography (PAINT). Here we implement two approaches for faster multicolor SMLM by splitting the emitted fluorescence toward two cameras: simultaneous two-color DNA-PAINT (S2C-DNA-PAINT) that images spectrally separated red and far-red imager strands on each camera, and spectral demixing dSTORM (SD-dSTORM) where spectrally close far-red fluorophores appear on both cameras before being identified by demixing. Using S2C-DNA-PAINT as a reference for low crosstalk, we evaluate SD-dSTORM crosstalk using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and integrity of muscle fibers. Gene replacement strategies for Duchenne muscular dystrophy (DMD) employing the adeno-associated virus (AAV) face the challenge imposed by the limited packaging capacity of AAV, only allowing the accommodation of a short version of dystrophin (µDys) that is still far removed from correcting human disease.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by impaired expression of dystrophin. Whereas mitochondrial dysfunction is thought to play an important role in DMD, the mechanism of this dysfunction remains to be clarified. Here we demonstrate that in DMD and other muscular dystrophies, a large number of Dlk1-Dio3 clustered miRNAs (DD-miRNAs) are coordinately up-regulated in regenerating myofibers and in the serum.

View Article and Find Full Text PDF
Article Synopsis
  • - Limb-girdle muscular dystrophy type R3 (LGMD R3) is a genetic disorder resulting from mutations in the alpha-sarcoglycan (α-SG) gene, leading to muscle weakness.
  • - Researchers conducted a study to find drugs that enhance the effectiveness of the proteasome inhibitor bortezomib in degrading the misfolded R77C-α-SG protein, identifying the HDAC inhibitor givinostat as a promising candidate.
  • - Givinostat's therapeutic action appears to inhibit the autophagic pathway, suggesting new insights into how misfolded SG proteins are degraded and indicating potential for treating other diseases with similar degradation issues.
View Article and Find Full Text PDF

Physalia physalis, the bluebottle in Australia, are colonial siphonophores that live at the surface of the ocean, mainly in tropical and subtropical waters. P. physalis are sometimes present in large swarms, and with tentacles capable of intense stings, they can negatively impact public health and commercial fisheries.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is the most common and cureless muscle pediatric genetic disease, which is caused by the lack or the drastically reduced expression of dystrophin. Experimental therapeutic approaches for DMD have been mainly focused in recent years on attempts to restore the expression of dystrophin. While significant progress was achieved, the therapeutic benefit of treated patients is still unsatisfactory.

View Article and Find Full Text PDF

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter.

View Article and Find Full Text PDF

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations influence tree diversity across different latitudes, using data from over 2.8 million trees.
  • AM trees were found to significantly contribute to reducing total tree diversity and turnover while enhancing nestedness at higher latitudes, contrasting with EcM trees that show less influence on compositional differences.
  • Environmental factors, especially temperature and precipitation, were more closely related to the beta-diversity patterns of AM trees, emphasizing the role of AM associations in maintaining global forest biodiversity.
View Article and Find Full Text PDF

Non-uniform illumination limits quantitative analyses of fluorescence imaging techniques. In particular, single molecule localization microscopy (SMLM) relies on high irradiances, but conventional Gaussian-shaped laser illumination restricts the usable field of view to around 40 µm × 40 µm. We present Adaptable Scanning for Tunable Excitation Regions (ASTER), a versatile illumination technique that generates uniform and adaptable illumination.

View Article and Find Full Text PDF

Ecology cannot yet fully explain why so many tree species coexist in natural communities such as tropical forests. A major difficulty is linking individual-level processes to community dynamics. We propose a combination of tree spatial data, spatial statistics and dynamical theory to reveal the relationship between spatial patterns and population-level interaction coefficients and their consequences for multispecies dynamics and coexistence.

View Article and Find Full Text PDF

As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts. We analyzed tree-ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species' traits shaped drought responses across the three strongest regional droughts over a 60-yr period.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a lethal muscle disorder, caused by mutations in the DMD gene and affects approximately 1:5000-6000 male births. In this report, we identified dysregulation of members of the Dlk1-Dio3 miRNA cluster in muscle biopsies of the GRMD dog model. Of these, we selected miR-379 for a detailed investigation because its expression is high in the muscle, and is known to be responsive to glucocorticoid, a class of anti-inflammatory drugs commonly used in DMD patients.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2A (LGMD2A or LGMDR1) is a neuromuscular disorder caused by mutations in the calpain 3 gene (). Previous experiments using adeno-associated viral (AAV) vector-mediated calpain 3 gene transfer in mice indicated cardiac toxicity associated with the ectopic expression of the calpain 3 transgene. Here, we performed a preliminary dose study in a severe double-knockout mouse model deficient in calpain 3 and dysferlin.

View Article and Find Full Text PDF

Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2D (LGMD2D) is characterized by a progressive proximal muscle weakness. LGMD2D is caused by mutations in the gene encoding α-sarcoglycan (α-SG), a dystrophin-associated glycoprotein that plays a key role in the maintenance of sarcolemma integrity in striated muscles. We report here on the development of a new in vitro high-throughput screening assay that allows the monitoring of the proper localization of the most prevalent mutant form of α-SG (R77C substitution).

View Article and Find Full Text PDF

Here, we present a 3D localization-based super-resolution technique providing a slowly varying localization precision over a 1 μm range with precisions down to 15 nm. The axial localization is performed through a combination of point spread function (PSF) shaping and supercritical angle fluorescence (SAF), which yields absolute axial information. Using a dual-view scheme, the axial detection is decoupled from the lateral detection and optimized independently to provide a weakly anisotropic 3D resolution over the imaging range.

View Article and Find Full Text PDF

We demonstrate subwavelength axial sectioning on biological samples with a stimulated emission depletion (STED) microscope combined with supercritical angle fluorescence (SAF) detection. SAF imaging is a powerful technique for imaging the membrane of the cell based on the direct exploitation of the fluorophore emission properties. Indeed, only when fluorophores are close to the interface can their evanescent near-field emission become propagative and be detected beyond the critical angle.

View Article and Find Full Text PDF
Article Synopsis
  • Climate plays a crucial role in shaping biodiversity across different latitudes, but many studies overlook the distinction between direct and indirect effects of climate on biodiversity.
  • Research using data from 35 large forest plots shows that climate directly affects tree species richness, favoring warm and moist environments.
  • The findings suggest that climatic conditions not only directly limit species diversity but also promote greater species richness by supporting higher stem abundance and facilitating (co-)evolution in productive warm climates.*
View Article and Find Full Text PDF