Publications by authors named "Bourens M"

Mutations in coiled-coil-helix-coiled-coil-helix-domain containing 10 (CHCHD10), a mitochondrial twin CX9C protein whose function is still unknown, cause myopathy, motor neuron disease, frontotemporal dementia, and Parkinson's disease. Here, we investigate CHCHD10 topology and its protein interactome, as well as the effects of CHCHD10 depletion or expression of disease-associated mutations in wild-type cells. We find that CHCHD10 associates with membranes in the mitochondrial intermembrane space, where it interacts with a closely related protein, CHCHD2.

View Article and Find Full Text PDF

Defects in mitochondrial cytochrome oxidase or respiratory chain complex IV (CIV) assembly are a frequent cause of human mitochondrial disorders. Specifically, mutations in four conserved assembly factors impinging the biogenesis of the mitochondrion-encoded catalytic core subunit 2 (COX2) result in myopathies. These factors afford stability of newly synthesized COX2 (the dystonia-ataxia syndrome protein COX20), a protein with two transmembrane domains, and maturation of its copper center, Cu (cardiomyopathy proteins SCO1, SCO2, and COA6).

View Article and Find Full Text PDF

Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process.

View Article and Find Full Text PDF

Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines.

View Article and Find Full Text PDF

Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates.

View Article and Find Full Text PDF

The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1.

View Article and Find Full Text PDF
Article Synopsis
  • The Oxa1/YidC/Alb3 family is crucial for forming respiratory and photosynthetic complexes in bacteria and organelles, specifically aiding in the assembly of mitochondrial proteins in yeast.
  • Researchers created random mutations in the Oxa1 protein to study how these changes affect the assembly of respiratory complexes, particularly noting the significant impact on complex V.
  • The study also uncovered important functional interactions between different transmembrane segments (TM2, TM4, TM5) and loops, indicating that TM4 and TM5 are essential for Oxa1's function.
View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the RAM network is involved in cell separation after cytokinesis, cell integrity and cell polarity. The key function of this network is the regulation of the activity of the protein kinase Cbk1p, which is a member of the conserved NDR kinase family. Cbk1p function is controlled by its sub-cellular localization and at least two phosphorylation events: an auto phosphorylation in the kinase domain (S570) and the phosphorylation of a C-terminal hydrophobic motif by an upstream kinase (T743).

View Article and Find Full Text PDF

In Saccharomyces cerevisiae the protein kinase Cbk1p is a member of the regulation of Ace2p and cellular morphogenesis (RAM) network that is involved in cell separation after cytokinesis, cell integrity, and cell polarity. In cell separation, the RAM network promotes the daughter cell-specific localization of the transcription factor Ace2p, resulting in the asymmetric transcription of genes whose products are necessary to digest the septum joining the mother and the daughter cell. RAM and SSD1 play a role in the maintenance of cell integrity.

View Article and Find Full Text PDF

Background Information: The CBK1 gene of Saccharomyces cerevisiae encodes a protein kinase that is a member of the NDR (nuclear Dbf2-related) family of protein kinases, which are involved in morphogenesis and cell proliferation. Previous studies have shown that deletion of CBK1 leads to a loss of polarity and the formation of large aggregates of cells. This aggregation phenotype is due to the loss of the daughter cell-specific accumulation of the transcription factor Ace2p, which is responsible for the transcription of genes whose products are necessary for the final separation of the mother and the daughter at the end of cell division.

View Article and Find Full Text PDF

Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this mutation is compensated for by overexpressing RMD9.

View Article and Find Full Text PDF

Oxa1p is a key component of the machinery for the insertion of membrane proteins in mitochondria, and in the yeast Saccharomyces cerevisiae, the deletion of OXA1 impairs the biogenesis of the three respiratory complexes of dual genetic origin. Oxa1p is formed from three domains located in the intermembrane space, the inner membrane and the mitochondrial matrix. We have isolated a high copy suppressor able to partially compensate for the respiratory deficiency caused by a large deletion of the matrix domain.

View Article and Find Full Text PDF