Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation.
View Article and Find Full Text PDFFor a sustainable economy, biodegradable biopolymers polyhydroxyalkanoates (PHA) are desirable substitutes to petroleum-based plastics that contaminate our environment. Medium-chain-length (MCL) PHA bioplastics are particularly interesting due to their thermoplastic properties. To hamper the high cost associated to PHA production, the use of bacterial mixed cultures cultivated in open systems and using cheap resources is a promising strategy.
View Article and Find Full Text PDFThe biodeterioration of cement-based materials in sewer environments occurs because of the production of sulfuric acid from the biochemical oxidation of HS by sulfur-oxidizing bacteria (SOB). In the perspective of determining the possible reaction pathways for the sulfur cycle in such conditions, hydrated cementitious binders were exposed to an accelerated laboratory test (BAC test) to reproduce a biochemical attack similar to the one occurring in the sewer networks. Tetrathionate was used as a reduced sulfur source to naturally develop sulfur-oxidizing activities on the surfaces of materials.
View Article and Find Full Text PDFA modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was established for simultaneous quantification of eight pharmaceutical molecules (2-hydroxyibuprofen, diclofenac, ibuprofen, propranolol, ofloxacin, oxazepam, sulfamethoxazole, carbamazepine) and caffeine in environmental matrices. Analysis was performed by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS-MS). Quantification was performed by using the C internal standard method for each molecule.
View Article and Find Full Text PDFThe biodeterioration of cementitious materials in sewer networks has become a major economic, ecological, and public health issue. Establishing a suitable standardized test is essential if sustainable construction materials are to be developed and qualified for sewerage environments. Since purely chemical tests are proven to not be representative of the actual deterioration phenomena in real sewer conditions, a biological test-named the Biogenic Acid Concrete (BAC) test-was developed at the University of Toulouse to reproduce the biological reactions involved in the process of concrete biodeterioration in sewers.
View Article and Find Full Text PDFThe removal efficiency of nine pharmaceutical compounds from primary sludge was evaluated in two different operating conditions: (i) in conventional Mesophilic Anaerobic Digestion (MAD) alone and (ii) in a co-treatment process combining Mesophilic Anaerobic Digestion and a Thermophilic Aerobic Reactor (MAD-TAR). The pilot scale reactors were fed with primary sludge obtained after decantation of urban wastewater. Concerning the biodegradation of organic matter, thermophilic aeration increased solubilization and hydrolysis yields of digestion, resulting in a further 26% supplementary removal of chemical oxygen demand (COD) in MAD-TAR process compared to the conventional mesophilic anaerobic digestion.
View Article and Find Full Text PDFWater Sci Technol
August 2019
The removal of polycyclic aromatic hydrocarbons (PAHs) in activated sludge was evaluated using two laboratory-scale bioreactors, coupled or not with a disintegration system (sonication). Mass balances performed on each system underlined that PAHs removal was significantly improved after sludge disintegration, especially for the higher molecular weight PAHs studied, which tended to adsorb to suspended matter. A model was developed in order to study the effect of sludge disintegration on the content of dissolved and colloidal matter (DCM), and to predict the potential impacts on PAHs availability and degradation.
View Article and Find Full Text PDFSeveral studies undertaken on the biodeterioration of concrete sewer infrastructures have highlighted the better durability of aluminate-based materials. The bacteriostatic effect of aluminum has been suggested to explain the increase in durability of these materials. However, no clear demonstration of the negative effect of aluminum on cell growth has been yet provided in the literature.
View Article and Find Full Text PDFThe partitioning between solids and the aqueous phase largely controls the fate of PAH compounds in biological treatment. The prediction of PAH sorption behaviour into activated sludge was investigated here. The suitability of a three-compartment model to describe partitioning in such a complex matrix was first evaluated by adding increasing quantities of dissolved and colloidal matter (DCM) (from 0 to 34.
View Article and Find Full Text PDFUp to half of the organic fraction of an urban wastewater is made up of particulate settleable solids (PSS). In activated sludge process (AS) this material is rapidly adsorbed on to microbial flocs but is only slowly and partially degraded. To better understand and predict the degradation kinetics observed, a determination of the proportion of hydrolytic bacteria is required.
View Article and Find Full Text PDF