LEGO® is a brand of toys that have entertained generations of children. Beyond amusement, LEGO® bricks also constitute a building ecosystem of their own that creators from the general public, as well as scientists and engineers, can use to design and assemble devices for all purposes, including scientific research and biotechnology. We describe several of these constructions to highlight the construction properties of LEGO® and their advantages, caveats, and impact in biotechnology.
View Article and Find Full Text PDFA general synthesis of -protected primary α-amino 1,3,4-oxadiazoles, from -carbamoyl imines, -isocyaniminotriphenylphosphorane (NIITP), and carboxylic acids, is described. Featuring an isocyanide addition reaction with -carbamoyl imines, this efficient three-component Ugi-type reaction was found to be broad in scope with respect to imine, and carboxylic acid coupling partners. Furthermore, the versatility of this method was demonstrated by α-amino 1,2,4-triazole synthesis, the late-stage functionalization of seven drug molecules, and five divergent derivatizations of a primary α-amino 1,3,4-oxadiazole.
View Article and Find Full Text PDFMechanical signals are essential for the regulation of many biological processes. Therefore, it has become paramount to account for these mechanical parameters when exploring biological processes. Here, we describe a protocol to apply cyclic uniaxial stretch on cells in culture using a LEGO®-based mechanical stretcher and a flexible custom-made polydimethylsiloxane culture vessel as well as validated downstream applications.
View Article and Find Full Text PDFThe measurement of affect is often of central interest in adolescent research. Very few studies have investigated the factor structure underlying adolescent responses to the Positive and Negative Affect Schedule, with mixed results. Only two studies reported on the trait version: one in Florida, the other in Chile.
View Article and Find Full Text PDFDysregulation of extracellular matrix (ECM) deposition and cellular metabolism promotes tumor aggressiveness by sustaining the activity of key growth, invasion, and survival pathways. Yet mechanisms by which biophysical properties of ECM relate to metabolic processes and tumor progression remain undefined. In both cancer cells and carcinoma-associated fibroblasts (CAFs), we found that ECM stiffening mechanoactivates glycolysis and glutamine metabolism and thus coordinates non-essential amino acid flux within the tumor niche.
View Article and Find Full Text PDFJ Paediatr Child Health
February 2019
Skin homeostasis relies on fine-tuning of epidermis-dermis interactions and is affected by aging. While extracellular matrix (ECM) proteins, such as integrins, are involved in aging, the molecular basis of the skin changes needs to be investigated further. Here, we showed that integrin co-receptor, SLC3A2, required for cell proliferation, is expressed at the surface of resting dermal fibroblasts in young patients and is reduced drastically with aging.
View Article and Find Full Text PDFSkin, by nature, is very similar to the Rouquayrol-Denayrouze suit mentioned by Jules Verne in Twenty Thousand Leagues Under the Sea: it allows "to risk (…) new physiological conditions without suffering any organic disorder". Mechanical cues, to the same extent as other environmental parameters, are such "new physiological conditions". Indeed, skin's primary function is to form a protective barrier to shield inner tissues from the external environment.
View Article and Find Full Text PDFBackground: Mitochondria are more than just the powerhouse of cells; they dictate if a cell dies or survives. Mitochondria are dynamic organelles that constantly undergo fusion and fission in response to environmental conditions. We showed previously that mitochondria of cells in a low oxygen environment (hypoxia) hyperfuse to form enlarged or highly interconnected networks with enhanced metabolic efficacy and resistance to apoptosis.
View Article and Find Full Text PDFCD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis.
View Article and Find Full Text PDFJ Paediatr Child Health
October 2014
Aim: Musculoskeletal symptoms are a common cause for presentation of children and adolescents to health-care settings. Junior doctors report lack of confidence in assessment of the paediatric musculoskeletal system. Our aim was to assess the confidence of junior medical officers (JMOs) working in the emergency department (ED) with paediatric musculoskeletal assessment and determine if a readily available teaching module would improve confidence.
View Article and Find Full Text PDFSkin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro.
View Article and Find Full Text PDFObjectives: To describe the clinical, laboratory, histopathological presentations and final diagnoses for children presenting to a tertiary paediatric rheumatology service with an inflammatory lesion of the orbit.
Methods: This was a retrospective descriptive case series of children with an inflammatory lesion of the orbit presenting to a single paediatric rheumatology service between January 1999 and July 2010.
Results: Ten patients, median age 11.
RhoGDI1 is one of the three major regulators of the Rho switch along with RhoGEFs and RhoGAPs. RhoGDI1 extracts prenylated Rho proteins from lipid membranes, sequesters them in the cytosol, and prevents nucleotide exchange or hydrolysis. In addition, RhoGDI1 protects prenylated Rho proteins from degradation.
View Article and Find Full Text PDFRho proteins are small GTPases of the Ras superfamily that regulate a wide variety of biological processes, ranging from gene expression to cell migration. Mechanistically, the major Rho GTPases function as molecular switches cycling between an inactive GDP-bound and an active GTP-bound conformation, although several Rho proteins spontaneously exchange nucleotides or are simply devoid of GTPase activity. For over a decade, RhoGEFs and RhoGAPs have been established as the mainstream regulators of Rho proteins, respectively flipping the switch on or off.
View Article and Find Full Text PDFThe 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.
View Article and Find Full Text PDFRegulation of the Rho switch has been typically centered on their main regulators, RhoGEFs and RhoGAPs. On the side, RhoGDI proteins have been considered mostly as passive regulators devoid of catalytic activity simply holding Rho proteins in the cytosol. In the May issue of Nature Cell Biology,1 we describe a novel evolutionary conserved function for RhoGDI1 as a chaperoning protein which prevents degradation of prenylated Rho GTPases.
View Article and Find Full Text PDFBackground: Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM) upon specific activation by guanine nucleotide exchange factors (GEFs). Accordingly, most GEFs are also cytosolic or associated with the PM.
View Article and Find Full Text PDFAt steady state, most Rho GTPases are bound in the cytosol to Rho guanine nucleotide dissociation inhibitors (RhoGDIs). RhoGDIs have generally been considered to hold Rho proteins passively in an inactive state within the cytoplasm. Here we describe an evolutionarily conserved mechanism by which RhoGDI1 controls the homeostasis of Rho proteins in eukaryotic cells.
View Article and Find Full Text PDFFocal adhesions have been intensely studied ever since their discovery in 1971. The last three decades have seen major advances in understanding the structure of focal adhesions and the functions they serve in cellular adhesion, migration, and other biological processes. In this chapter, we begin with a historical perspective of focal adhesions, provide an overview of focal adhesion biology, and highlight recent major advances in the field.
View Article and Find Full Text PDFDuring trans-endothelial migration (TEM), leukocytes use adhesion receptors such as intercellular adhesion molecule-1 (ICAM1) to adhere to the endothelium. In response to this interaction, the endothelium throws up dynamic membrane protrusions, forming a cup that partially surrounds the adherent leukocyte. Little is known about the signaling pathways that regulate cup formation.
View Article and Find Full Text PDFExtracellular matrix (ECM) receptors of the integrin family initiate changes in cell shape and motility by recruiting signaling components that coordinate these events. Integrin-linked kinase (ILK) is one such partner of beta1 integrins that participates in dynamic rearrangement of cell-matrix adhesions and cell spreading by mechanisms that are not well understood. To further elucidate the role of ILK in these events, we engineered a chimeric molecule comprising ILK fused to a membrane-targeted green fluorescent protein (ILK-GFP-F).
View Article and Find Full Text PDF