An all-fiber polarization maintaining (PM) laser tunable over 170 nm via Raman soliton self-frequency shift (SSFS) delivering sub-100 fs pulses with a central wavelength ranging from 1880 to 2050 nm is presented. The 40 MHz laser emits power ranging from 15 to 34 mW with pulse duration as short as 80 fs. It is based on exclusively commercially available standard fibers and has been designed to produce sub-100 fs pulse durations over the whole spectral range without the need for adjusting neither nonlinearities nor dispersion.
View Article and Find Full Text PDFWe report on an all-fiber 200 W widely tunable GHz electro-optic (EO) frequency comb operating in the nonlinear regime. The EO comb pulses at 1030 nm are initially pre-compressed to sub-2 ps, then power amplified to 2.5 W, and finally boosted to 200 W in a newly designed large-mode-area, Yb-doped photonic crystal fiber.
View Article and Find Full Text PDFA Watt-level continuous and single frequency blue laser at 461 nm is obtained by frequency-doubling an amplified diode laser operating at 922 nm via a LBO crystal in a resonant Fabry-Pérot cavity. We achieved a best optical conversion efficiency equal to 87% with more than 1 W output power in the blue, and limited by the available input power. The frequency-converted beam is characterized in terms of long term power stability, residual intensity noise, and geometrical shape.
View Article and Find Full Text PDFWe report a full experimental comparison study on the injection of a Ti:Sa multi-terawatt amplifier chain with a standard 15 fs Ti:Sa oscillator and 35 fs frequency-doubled fiber oscillator. The study highlights that the Ti:Sa oscillator, with high performance in terms of pulse duration and spectral width, can be replaced by the frequency-doubled fiber oscillator to seed Ti:Sa amplifier chains almost without any compromise on the output pulse duration and picosecond contrast. Finally, we demonstrate for the first time to our knowledge a 30 TW and 33 fs Ti:Sa amplifier injected by a fiber oscillator.
View Article and Find Full Text PDFWe demonstrate a robust linearly polarized 365 W, very low amplitude noise, single frequency master oscillator power amplifier at 1064 nm. Power scaling was done through a custom large mode area fiber with a mode field diameter of 30 µm. No evidence of stimulated Brillouin scattering or modal instabilities are observed.
View Article and Find Full Text PDFWe report on a passively mode-locked fiber laser emitting around 976nm. The self-starting mode locking is achieved in an unidirectional ring cavity by means of nonlinear polarization evolution. Stable single-pulse operation is observed for 480mW of average output power.
View Article and Find Full Text PDFWe report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15.5 MHz repetition rate, resulting in 710 nJ of pulse energy.
View Article and Find Full Text PDFWe report what we believe to be the first millijoule-class ytterbium-doped fiber laser system operating on the zero-phonon line at 977 nm. An actively Q-switched master fiber oscillator delivers nanosecond pulses (FWHM 12-32 ns) at adjustable multiples of 10 kHz repetition rates that are further amplified in an ultralarge core photonic crystal fiber amplifier. At the highest available pumping level, a maximal average power of 78 W was obtained for 32 ns pulses at a repetition rate of 190 kHz, whereas the millijoule energy level was reached for 12 ns pulses at the lower repetition rate of 10 kHz.
View Article and Find Full Text PDFWe report the first experimental demonstration (to our knowledge) of high-order harmonic generation in rare gases driven by a state-of-the-art high-power Yb-doped-fiber chirped-pulse amplification system. The fiber laser delivers 270 fs pulses in the 30-100 microJ energy range at repetition rates varying from 100 kHz to 1 MHz. A proper focalization allows reaching several 10(13) W/cm2 in a gas jet.
View Article and Find Full Text PDFIn this paper, we investigate power scalability of ytterbium-doped ultra large core photonic crystal fiber laser operating on the zero-line transition. We first report on an 80 microm core diameter ytterbium-doped rod-type photonic crystal fiber laser emitting up to 94 W in continuous wave regime when operating at 977 nm, which is to our knowledge the highest output power ever achieved from a single-mode solid-state laser operating at this wavelength. Key parameters of ytterbium-doped three-level laser, such as transparency pump intensity, pump absorption saturation, and gain competition between three and four-level laser operation are then discussed in the particular context of high power fiber laser operating at 977 nm.
View Article and Find Full Text PDFWe report on a compact double-stage ytterbium-doped-fiber chirped-pulse amplifier system delivering high temporal quality 270 fs pulses of 100 microJ energy at a repetition rate of 300 kHz resulting in a peak power of 340 MW. The recompression down to 1.1 times the Fourier limit is based on the exploitation of nonlinear phase shifts associated with mismatched stretcher-compressor units.
View Article and Find Full Text PDFWe report on the study of direct amplification of femtosecond pulses in an 80 mum core diameter microstructured Yb-doped rod-type fiber amplifier in the nonlinear regime. The system includes a compact single grating compressor for the compensation of the small dispersion in the amplifier. With a 1250 line/mm (l/mm) grating-based compressor, pulses as short as 49 fs with 870 nJ pulse energy and 12 MW peak power are obtained.
View Article and Find Full Text PDFWe studied the temporal evolution of the photodarkening effect in an Yb-doped silica LMA fiber. The absorption spectra exhibit an increase in absorption in the visible and in the near infrared spectral range when the fiber is exposed to pump light around 980 nm. We show the influence of the photodarkening on the cw lasing properties of the fiber, and demonstrate photobleaching of the same fiber by exposure to UV light at 355 nm.
View Article and Find Full Text PDFWe report an all solid state laser device producing tunable dual wavelength emission in the near IR region (1060nm, and 1550 nm) by use of an Er/Yb co-doped fiber. Generation of continuous-wave radiation around 630 nm is then demonstrated by extra-cavity sum frequency mixing in a Periodically Poled Lithium Niobate (PPLN) crystal. Quasi phase matching conditions are obtained over 7 nm to generate tunable coherent light in the red spectral range.
View Article and Find Full Text PDFCoherent combining is demonstrated in a clad-pumped Yb-doped double-core fiber laser. A slope efficiency of more than 70% is achieved with 96% of the total output power in the fundamental mode of one of the two cores. This high combining efficiency is obtained when both cores are coupled via a biconical fused taper in a Michelson interferometer configuration.
View Article and Find Full Text PDF