Publications by authors named "Boukari H"

Two-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe layer produced vdW epitaxy.

View Article and Find Full Text PDF

The physiochemical properties of hydrogels utilized in 3D culture can be used to modulate cell phenotype and morphology with a striking resemblance to cellular processes that occur . Indeed, research areas including regenerative medicine, tissue engineering, cancer models, and stem cell differentiation have readily utilized 3D biomaterials to investigate cell biological questions. However, cells are only one component of this biomimetic milieu.

View Article and Find Full Text PDF

Doping a two-dimensional semiconductor with magnetic atoms is a possible route to induce magnetism in the material. We report on the atomic structure and electronic properties of monolayer WSe_{2} intentionally doped with vanadium atoms by means of scanning transmission electron microscopy and scanning tunneling microscopy and spectroscopy. Most of the V atoms incorporate at W sites.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia and is associated with the accumulation of amyloid-β (Aβ), a peptide whose aggregation has been associated with neurotoxicity. Drugs targeting Aβ have shown great promise in 2D in vitro models and mouse models, yet preclinical and clinical trials for AD have been highly disappointing. We propose that current in vitro culture systems for discovering and developing AD drugs have significant limitations; specifically, that Aβ aggregation is vastly different in these 2D cultures carried out on flat plastic or glass substrates vs.

View Article and Find Full Text PDF

Translation fidelity is the limiting factor in the accuracy of gene expression. With an estimated frequency of 10, errors in mRNA decoding occur in a mostly stochastic manner. Little is known about the response of higher eukaryotes to chronic loss of ribosomal accuracy as per an increase in the random error rate of mRNA decoding.

View Article and Find Full Text PDF

We report on the potential of a new spin noise spectroscopy approach by demonstrating all-optical probing of spatiotemporal spin fluctuations. This is achieved by homodyne mixing of a spatially phase-modulated local oscillator with spin-flip scattered light, from which the frequency and wave vector dependence of the spin noise power is unveiled. As a first application of the method we measure the spatiotemporal spin noise in weakly n-doped CdTe layers, from which the electron spin diffusion constant and spin relaxation rates are determined.

View Article and Find Full Text PDF

The 1555 A to G substitution in mitochondrial 12S A-site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G-mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read-through of mtDNA-encoded MT-CO1 protein constitute reliable measures of mitoribosomal misreading.

View Article and Find Full Text PDF

Noble metallic nanoparticles (NPs) such as gold and silver nanoparticles (AuNPs and AgNPs) have been shown to exhibit anti-tumor effect in anti-angiogenesis, photothermal and radio therapeutics. On the other hand, cell membranes are critical locales for specific targeting of cancerous cells. Therefore, NP-membrane interactions need be studied at molecular level to help better understand the underlying physicochemical mechanisms for future applications in cancer nanotechnology.

View Article and Find Full Text PDF

A novel method of determining the total uncertainty in the integrated intensity of fitted emission lines in multipeaked emission spectra is presented. The proposed method does not require an assumption of the type of line profile to be specified. The absolute difference between a fit and measured spectrum defines the uncertainty of the integrated signal intensity and is subsequently decomposed to determine the uncertainty of each peak in multiline fits.

View Article and Find Full Text PDF

A detailed knowledge of the atomic structure of magnetic semiconductors is crucial to understanding their electronic and magnetic properties, which could enable spintronic applications. Energy-dispersive X-ray spectrometry (EDX) in the scanning transmission electron microscope and atom probe tomography (APT) experiments reveal the formation of Cr-rich regions in Cd1-x Cr x Te layers grown by molecular beam epitaxy. These Cr-rich regions occur on a length scale of 6-10 nm at a nominal Cr composition of x=0.

View Article and Find Full Text PDF

We describe a systematic approach to image, track, and quantify the movements of HIV viruses embedded in human cervical mucus. The underlying motivation for this study is that, in HIV-infected adults, women account for more than half of all new cases and most of these women acquire the infection through heterosexual contact. The endocervix is believed to be a susceptible site for HIV entry.

View Article and Find Full Text PDF

Spin noise spectroscopy is an optical technique which can probe spin resonances non-perturbatively. First applied to atomic vapours, it revealed detailed information about nuclear magnetism and the hyperfine interaction. In solids, this approach has been limited to carriers in semiconductor heterostructures.

View Article and Find Full Text PDF

Here we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation.

View Article and Find Full Text PDF

Unlabelled: The emerging epidemic of drug resistance places the development of efficacious and safe antibiotics in the spotlight of current research. Here, we report the design of next-generation aminoglycosides. Discovery efforts were driven by rational synthesis focusing on 4' alkylations of the aminoglycoside paromomycin, with the goal to alleviate the most severe and disabling side effect of aminoglycosides-irreversible hearing loss.

View Article and Find Full Text PDF

Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers.

View Article and Find Full Text PDF

Influenza A virus (IAV) enters host cells by endocytosis followed by acid-activated penetration from late endosomes (LEs). Using siRNA silencing, we found that histone deacetylase 8 (HDAC8), a cytoplasmic enzyme, efficiently promoted productive entry of IAV into tissue culture cells, whereas HDAC1 suppressed it. HDAC8 enhanced endocytosis, acidification, and penetration of the incoming virus.

View Article and Find Full Text PDF

We report on the observation of spin-dependent optically dressed states and the optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are optically dressed by a strong laser field, and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned by using the optical Stark effect induced by a control laser.

View Article and Find Full Text PDF

Controlled diffusion and release of soluble molecules is one of the key challenges in developing three-dimensional (3D) scaffolds for tissue engineering and drug delivery applications in part because current methods to measure dynamic transport properties are difficult to perform directly, are strongly affected by the experimental setup, and therefore can be a subject to various artifacts. In this work we present a method for direct measurement of translational diffusion of solutes, namely Fluorescence Correlation Spectroscopy (FCS), by characterizing the diffusion of model proteins through a 3D cross-linked poly(ethylene glycol) (PEG) hydrogel scaffold. We examined both the dynamics of hydrogel structure (, cross-linking and swelling) as well as protein size and their effect on protein diffusivity.

View Article and Find Full Text PDF

Endophilins participate in membrane scission events that occur during endocytosis and intracellular organelle biogenesis through the combined activity of an N-terminal BAR domain that interacts with membranes and a C-terminal SH3 domain that mediates protein binding. Endophilin B1 (Endo B1) was identified to bind Bax, a Bcl-2 family member that promotes apoptosis, through yeast two-hybrid protein screens. Although Endo B1 does not bind Bax in healthy cells, during apoptosis, Endo B1 interacts transiently with Bax and promotes cytochrome c release from mitochondria.

View Article and Find Full Text PDF

Time-resolved confocal microscopy and fluorescence correlation spectroscopy were used to examine the movements of fluorescently labeled HIV-virions (approximately 100 nm) added to samples of human cervical mucus. Particle-tracking analysis indicates that the motion of most virions is decreased 200-fold compared to that in aqueous solution and is not driven by typical diffusion. Rather, the time-dependence of their ensemble-averaged mean-square displacements is proportional to tau(alpha) + v(2)tau(2), describing a combination of anomalous diffusion (alpha approximately 0.

View Article and Find Full Text PDF

Measurement of live-cell binding interactions is vital for understanding the biochemical reactions that drive cellular processes. Here, we develop, characterize, and apply a new procedure to extract information about binding to an immobile substrate from fluorescence correlation spectroscopy (FCS) autocorrelation data. We show that existing methods for analyzing such data by two-component diffusion fits can produce inaccurate estimates of diffusion constants and bound fractions, or even fail altogether to fit FCS binding data.

View Article and Find Full Text PDF

An optical spin orientation is achieved for a Mn atom localized in a semiconductor quantum dot using quasiresonant excitation at zero magnetic field. Optically created spin-polarized carriers generate an energy splitting of the Mn spin and enable magnetic moment orientation controlled by the photon helicity and energy. The dynamics and the magnetic field dependence of the optical pumping mechanism show that the spin lifetime of an isolated Mn atom at zero magnetic field is controlled by a magnetic anisotropy induced by the built-in strain in the quantum dots.

View Article and Find Full Text PDF

We have modeled tumor-induced angiogenesis; our model includes the phenomena of the migratory response of endothelial cells (ECs) to tumor angiogenic factors, and the interaction of ECs with the extracellular matrix (ECM). ECs switch between growth, differentiation, motility, or apoptotic behavior in response to the local topology and composition of the ECM. Assuming the ECM medium as a statistically inhomogeneous medium (some area support sprout growth, some not), we show that the ECM can be a natural barrier to angiogenesis.

View Article and Find Full Text PDF

The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or "basket". Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket.

View Article and Find Full Text PDF