Nanomaterials (Basel)
January 2021
Magnetic skyrmions are spin swirling solitonic defects that can play a major role in information technology. Their future in applications and devices hinges on their efficient manipulation and detection. Here, we explore from ab-initio their nature as magnetic inhomongeities in an otherwise unperturbed magnetic material, Fe layer covered by a thin Pd film and deposited on top of Ir(111) surface.
View Article and Find Full Text PDFThe viability of past, current and future devices for information technology hinges on their sensitivity to the presence of impurities. The latter can reshape extrinsic Hall effects or the efficiency of magnetoresistance effects, essential for spintronics, and lead to resistivity anomalies, the so-called Kondo effect. Here, we demonstrate that atomic defects enable highly efficient all-electrical detection of spin-swirling textures, in particular magnetic skyrmions, which are promising bit candidates in future spintronics devices.
View Article and Find Full Text PDFWhen electrons are driven through unconventional magnetic structures, such as skyrmions, they experience emergent electromagnetic fields that originate several Hall effects. Independently, ground-state emergent magnetic fields can also lead to orbital magnetism, even without the spin-orbit interaction. The close parallel between the geometric theories of the Hall effects and of the orbital magnetization raises the question: does a skyrmion display topological orbital magnetism? Here we first address the smallest systems with nonvanishing emergent magnetic field, trimers, characterizing the orbital magnetic properties from first-principles.
View Article and Find Full Text PDFChiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii-Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii-Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope.
View Article and Find Full Text PDFWhether rare-earth materials can be used as single-atom magnetic memory is an ongoing debate in recent literature. Here we show, by inelastic and spin-resolved scanning tunnelling-based methods, that we observe a strong magnetic signal and excitation from Fe atoms adsorbed on Pt(111), but see no signatures of magnetic excitation or spin-based telegraph noise for Ho atoms. Moreover, we observe that the indirect exchange field produced by a single Ho atom is negligible, as sensed by nearby Fe atoms.
View Article and Find Full Text PDFThin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust noncollinear spin textures that can be moved and manipulated by small electrical currents. Here we show here a technique to detect isolated nanoskyrmions with a current perpendicular-to-plane geometry, which has immediate implications for device concepts.
View Article and Find Full Text PDFElectrons mediate many of the interactions between atoms in a solid. Their propagation in a material determines its thermal, electrical, optical, magnetic and transport properties. Therefore, the constant energy contours characterizing the electrons, in particular the Fermi surface, have a prime impact on the behaviour of materials.
View Article and Find Full Text PDFThe interplay between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom-up approach towards a long-term understanding of concentrated/dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low-temperature scanning tunnelling spectroscopy combined with density functional theory and numerical renormalization group calculations.
View Article and Find Full Text PDFWe demonstrate using inelastic scanning tunneling spectroscopy and simulations based on density functional theory that the amplitude and sign of the magnetic anisotropy energy for a single Fe atom adsorbed onto the Pt(111) surface can be manipulated by modifying the adatom binding site. Since the magnitude of the measured anisotropy is remarkably small, up to an order of magnitude smaller than previously reported, electron-hole excitations are weak and thus the spin excitation exhibits long lived precessional lifetimes compared to the values found for the same adatom on noble metal surfaces.
View Article and Find Full Text PDFPhys Rev Lett
December 2005
The nature of the weakly dispersive electronic band near the Fermi level observed in photoemission experiments on the diluted magnetic semiconductor GaMnAs is investigated theoretically. The combination of experimental features appears puzzling. We show that the formation of the band is closely related to the presence of the Mn interstitial impurities.
View Article and Find Full Text PDF