Different from current nutrient recovery technologies of recovering one or two nutrient components (PO or NH) from wastewater, this study aimed to fractionate various nutrient anions and cations simultaneously, including PO, SO, NH, K, Mg and Ca, into several streams. The recovered streams could be further paired together to produce high-value products. A novel electrodialysis process was developed by integrating monovalent selective anion and cation exchange membranes into an electrodialysis stack.
View Article and Find Full Text PDFAs the consumption of global phosphorus reserves accelerates, recovering phosphorus as struvite (MgNHPO·6HO) from wastewater is an important option for phosphorus recycling. However, magnesium source is one of the major limiting factors for struvite recovery. In this work, different from previous studies where seawater was used directly as magnesium source in struvite precipitation, an electrodialysis stack equipped with monovalent selective cation-exchange membranes was designed to fractionate Mg from seawater for struvite recovery.
View Article and Find Full Text PDFRecently, digestate disintegration gained interest as an alternative strategy to feedstock pretreatment for anaerobic digestion. This study evaluated the effect of three different digestate disintegration methods (hydrogen peroxidation, ozone treatment and ultrasound) on manure digestate, potato waste digestate and mixed organic waste digestate. Lab-scale anaerobic digestion experiments were carried out by adding disintegrated digestate to the related substrate and inoculum with simulated recycle ratios of 0.
View Article and Find Full Text PDFSugar is commonly substituted with stevia-based products in food industry and in our daily-life. This substitution results in a change in food product characteristic formula and properties that may affect the growth dynamics of food pathogenic and spoilage bacteria. This work studies the effect of table sugar (TS), laboratory sucrose (LS), commercial stevia (St) and steviol glycosides (SG) on the growth dynamics of Salmonella Typhimurium and Listeria monocytogenes.
View Article and Find Full Text PDFThe bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity.
View Article and Find Full Text PDFThe industrial implementation of alternative technologies in the processing of saline effluent streams is a topic of growing importance. In this technical feasibility study, the desalination of an industrial saline stream containing about 75 g L(-1) NaCl contaminated with some organic matter using bipolar membrane electrodialysis (EDBM) was investigated on lab-scale. Bipolar membranes of two different manufacturers (PCA - PolymerChemie Altmeier GmbH and FuMA-Tech GmbH) were tested and compared in terms of electrical resistance, current efficiency and purity of the produced acid and base stream.
View Article and Find Full Text PDFBottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates.
View Article and Find Full Text PDFIn isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water.
View Article and Find Full Text PDFStimulated by the depletion of phosphate resources, phosphate recovery systems have been studied in recent years. The use of struvite reactors has proven to be an effective phosphate recovery process. However, the struvite reactor effluent still consists of an excessive amount of phosphate that cannot be recovered nor can be directly discharged.
View Article and Find Full Text PDFThis study aims to evaluate the feasibility of a pellet reactor in reducing the scaling potential in electrodialysis with bipolar membranes for water containing a high concentration of calcium by adding sodium carbonate to precipitate carbonate as calcium carbonate on granular seed material. The optimized operating condition obtained at pH 11.1, and a ratio of [CO3(2-)]:[Ca(2+)]=1.
View Article and Find Full Text PDFAs steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples.
View Article and Find Full Text PDFThis paper presents a systematic techno-economical analysis and an environmental impact evaluation of a reverse osmosis (RO) concentrate treatment process using electrodialysis (ED) in view of environmental management of brine discharges. The concentrate originates from a secondary effluent treated by RO. Without any treatment, the concentrate would have to be discharged; this is compared in this study to the costs and benefits of an effective treatment method in a pilot scale ED plant.
View Article and Find Full Text PDFMicroalgae hold great potential as a feedstock for biofuels or bulk protein or treatment of wastewater or flue gas. Realising these applications will require the development of a cost-efficient harvesting technology. Here, we explore the potential of flocculation induced by high pH for harvesting Chlorella vulgaris.
View Article and Find Full Text PDFThe autotrophic nitrogen removal process (partial nitritation combined with the Anammox process) is a new and sustainable nitrogen removal technique for nitrogen-rich streams. A modelling study has been performed to define optimal process conditions (temperature, oxygen supply, pH and biomass retention) and to investigate the influence of chemical oxygen demand, nitrogen loading rate and hydraulic retention time on three alternative reactor configurations: a single oxygen-limited partial nitritation reactor, a single Anammox reactor, and a combination of partial nitritation and Anammox in a single reactor. The model applied was compared to experimental data from the literature and gave good agreement for all three reactor configurations.
View Article and Find Full Text PDF