Genomic integrity of human pluripotent stem cells (hPSCs) is essential for research and clinical applications. However, genetic abnormalities can accumulate during hPSC generation and routine culture and following gene editing. Their occurrence should be regularly monitored, but the current assays to assess hPSC genomic integrity are not fully suitable for such regular screening.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) have the potential to differentiate virtually into any cell type in unlimited quantities. Therefore, they are ideal for in vitro tissue modeling or to produce cells for clinical use. Importantly, and differently from immortalized and cancer cell lines, the hiPSC genome scrupulously reproduces that of the cell from which they were derived.
View Article and Find Full Text PDFProgress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1).
View Article and Find Full Text PDFThis year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are obtained by reprogramming differentiated cells through forced expression of four embryonic transcription factors. The discovery of this technology, able to transform a differentiated cell into a pluripotent cell, has profoundly shifted the paradigm of the concept of cell identity, since it is now possible to obtain in vitro any cell type from an initial sample of skin or blood cells from a healthy volunteer or patient. Applications of iPSCs are exceedingly large, and comprise the in vitro modeling of normal or pathological tissues, including for massive drug screening.
View Article and Find Full Text PDF