Archaeological, palaeontological and geological evidence shows that post-glacial warming released human populations from their various climate-bound refugia. Yet specific connections between these refugia and the timing and routes of post-glacial migrations that ultimately established modern patterns of genetic variation remain elusive. Here, we use Y-chromosome markers combined with autosomal data to reconstruct population expansions from regional refugia in Southwest Asia.
View Article and Find Full Text PDFDespite being an important target of conservation concern and horticultural interest, Lebanese irises yet have a confusing taxonomic history and species' delimitation is often considered problematic, more especially among royal irises (Iris section Oncocyclus). Indeed, these irises of exceptionally large and spectacular flowers have radiated across Caucasus and eastern Mediterranean giving rise to a number of strict endemic taxa, many of them being considered under threat. Whilst efforts have mostly focused on clarifying the evolutionary relationships in the group based on morphological and molecular data, karyological and cytogenetic characters have been comparatively overlooked.
View Article and Find Full Text PDFThe Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations.
View Article and Find Full Text PDFBackground And Aims: Juniperus excelsa M.-Bieb. is a major forest element in the mountains of the eastern part of Mediterranean and sub-Mediterranean regions.
View Article and Find Full Text PDFThe manifestation of coronary artery disease (CAD) follows a well-choreographed series of events that includes damage of arterial endothelial cells and deposition of lipids in the sub-endothelial layers. Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are a crucial step in understanding global CAD pathophysiology. In this study, we report a GWAS on the genetic basis of arterial stenosis as measured by cardiac catheterization in a Lebanese population.
View Article and Find Full Text PDFAfghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures.
View Article and Find Full Text PDFBackground: Elevated levels of total plasma homocysteine are a risk factor for atherosclerotic disease.
Aims: The rationale behind this study is to explore the correlation between degree and site of coronary lesion and hyperhomocysteinemia in Lebanese CAD patients and assess environmental and genetic factors for elevated levels of total plasma homocysteine.
Methods: A total of 2644 patients were analyzed for traditional CAD risk factors.
Genome wide association studies (GWAS) and their replications that have associated DNA variants with myocardial infarction (MI) and/or coronary artery disease (CAD) are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3), and 88 genes in related phenotypes.
View Article and Find Full Text PDF