A rotational band has been unambiguously observed in an odd-proton transfermium nucleus for the first time. An in-beam gamma-ray spectroscopic study of 101/251Md has been performed using the gamma-ray array JUROGAM combined with the gas-filled separator RITU and the focal plane device GREAT. The experimental results, compared to Hartree-Fock-Bogolyubov calculations, lead to the interpretation that the rotational band is built on the [521]1/2(-) Nilsson state.
View Article and Find Full Text PDFThe reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core.
View Article and Find Full Text PDFA new isomeric 0(+) state was identified as the first excited state in the self-conjugate (N=Z) nucleus 72Kr. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new 0(+) state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that 72Kr is one of the rare nuclei having an oblate-deformed ground state.
View Article and Find Full Text PDF