Publications by authors named "Bouchet A"

Herein, we report the synthesis, photophysical characterization and validation of iridium(iii)-polypyridine complexes functionalized for click chemistry and bioorthogonal chemistry, as well as their versatile applications as probes in bioimaging studies exploiting metabolic labeling. The designed dyes are conjugated to chemical reporters in a specific manner within cells by CuAAC ligation and display attractive photophysical properties in the UV-visible range. They are indeed highly photostable and emit in the far-red to near-IR region with long lifetimes and large Stokes shifts.

View Article and Find Full Text PDF

While cancer is one of the most documented diseases, how normal cells become cancerous is still debated. To address this question, in the first part of this review, we investigated the long succession of theories of carcinogenesis since antiquity. Initiated by Hippocrates, Aristotle, and Galen, the humoral theory interpreted cancer as an excess of acid, the black bile.

View Article and Find Full Text PDF

Radiobiological data, whether obtained at the clinical, biological or molecular level has significantly contributed to a better description and prediction of the individual dose-response to ionizing radiation and a better estimation of the radiation-induced risks. Particularly, over the last seventy years, the amount of radiobiological data has considerably increased, and permitted the mathematical formulas describing dose-response to become less empirical. A better understanding of the basic radiobiological mechanisms has also contributed to establish quantitative inter-correlations between clinical, biological and molecular biomarkers, refining again the mathematical models of description.

View Article and Find Full Text PDF

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production.

View Article and Find Full Text PDF

Purpose: Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB).

View Article and Find Full Text PDF

Purpose: Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier.

Methods And Materials: Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy).

View Article and Find Full Text PDF

Ether-lipids (EL) are specific lipids bearing a characteristic sn-1 ether bond. Depending on the ether or vinyl-ether nature of this bond, they are present as alkyl- or alkenyl-EL, respectively. Among EL, alkenyl-EL, also referred as plasmalogens in the literature, attract most of the scientific interest as they are the predominant EL species in eukaryotic cells, thus less is known about alkyl-EL.

View Article and Find Full Text PDF
Article Synopsis
  • Stereotactic body radiation therapy (SBRT) allows for high doses of radiation to be delivered in fewer sessions, potentially aided by biological mechanisms such as the hypersensitivity to low dose (HRS) phenomenon.
  • Research shows that when HRS-positive tumor cells are exposed to SBRT, they experience more severe DNA damage compared to HRS-negative cells, indicating that HRS can enhance the effectiveness of radiation therapy.
  • The findings suggest that SBRT's approach of using minibeams for dose delivery could lead to better outcomes in HRS-positive tumors, and may also influence the risk of tissue overreactions after radiation treatment.
View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the efficacy and safety of endovascular treatment of hemoptysis caused by primary lung cancer.

Methods: We conducted a single-center retrospective study (2005-2021), including patients who underwent thoracic embolization for life-threatening hemoptysis complication of lung cancer. Exclusion criteria were hemoptysis caused by a benign lung tumor or by a lung metastasis of a primary non-lung tumor.

View Article and Find Full Text PDF

Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident synchrotron beam into arrays of parallel microbeams, typically a few tens of micrometres wide and depositing several hundred Gray. This high dose, high dose rate, spatially fractionated radiotherapy has a high therapeutic impact on tumors, especially in intracranial locations. MRT leads to better control of incurable high-grade glioma than from homogeneous radiotherapy.

View Article and Find Full Text PDF

Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists.

View Article and Find Full Text PDF

Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980 nm excitation and good stability in solution.

View Article and Find Full Text PDF

Background: The standard-of-care protocol, based on plasma exchanges, high-dose intravenous immunoglobulin and optimization of maintenance immunosuppression, can slow down the evolution of antibody-mediated rejection (AMR), but with high interindividual variability. Identification of a reliable predictive tool of the response to AMR treatment is a mandatory step for personalization of the follow-up strategy and to guide second-line therapies.

Methods: Interrogation of the electronic databases of 2 French university hospitals (Lyon and Strasbourg) retrospectively identified 81 renal transplant recipients diagnosed with AMR without chronic lesions (cg score ≤1) at diagnosis and for whom a follow-up biopsy had been performed 3-6 months after initiation of therapy.

View Article and Find Full Text PDF

Purpose: Living kidney donors (LKD) partially compensate the initial loss of glomerular filtration rate (GFR), a phenomenon known as renal functional reserve (RFR). RFR is reduced in the elderly, a population with increased prevalence of chronic kidney disease. We hypothesized that the selected, healthy population of LKD, would specifically inform about the physiological determinants of the RFR and studied it using measured GFR (mGFR).

View Article and Find Full Text PDF

The structure of an isolated Ag (benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800-1800 cm fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag -π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring.

View Article and Find Full Text PDF

The microbeam radiation therapy (MRT), a spatially micro-fractionated synchrotron radiotherapy, leads to better control of incurable high-grade glioma than that obtained upon homogeneous radiotherapy. We evaluated the effect of meloxicam, a non-steroidal anti-inflammatory drug (NSAID), to increase the MRT response. Survival of rats bearing intracranial 9L gliosarcoma treated with meloxicam and/or MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing) was monitored.

View Article and Find Full Text PDF

Microbeam radiation therapy, an alternative radiosurgical treatment under preclinical investigation, aims to safely treat muzzle tumors in pet animals. This will require data on the largely unknown radiation toxicity of microbeam arrays for bones and teeth. To this end, the muzzle of six young adult New Zealand rabbits was irradiated by a lateral array of microplanar beamlets with peak entrance doses of 200, 330 or 500 Gy.

View Article and Find Full Text PDF

The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging-Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS).

View Article and Find Full Text PDF

Introduction: The use of personal protective equipment, especially medical masks, increased dramatically during the COVID-19 crisis. Medical masks are made of synthetic materials, mainly polypropylene, and a majority of them are produced in China and imported to the European market. The urgency of the need has so far prevailed over environmental considerations.

View Article and Find Full Text PDF

The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term "radiosensitivity" was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as "radiosensitivity" was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility).

View Article and Find Full Text PDF
Article Synopsis
  • The TRPV2 channel is a calcium-selective ion channel activated by lipids like LysoPhosphatidylCholine (LPC), with potential implications for cancer treatments.
  • Researchers studied a new alkyl-ether-lipid, AD-HGPC, to understand its effects on TRPV2 channel trafficking and its role in calcium-dependent migration of breast cancer cells.
  • Findings indicate that AD-HGPC enhances TRPV2 activity, promoting calcium entry and cell migration through specific cellular pathways, suggesting a new direction for therapeutic strategies targeting metastatic cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Space exploration has evolved from a Cold War focus to a significant global challenge, prompting a closer look at the dangers posed by radiation in space for astronauts.
  • Researchers have identified three main radiation concerns: rare heavy ions in low Earth orbit, common secondary particles like low-energy neutrons in deep space, and residual radiation affecting deep tissues inside spacecraft.
  • The potential health risks include skin cancer, cataracts, bone loss, and cardiovascular aging, necessitating refined radiation protection strategies to assess and mitigate these risks during future missions.
View Article and Find Full Text PDF

Delivery of high-radiation doses to brain tumors via multiple arrays of synchrotron X-ray microbeams permits huge therapeutic advantages. Brain tumor (9LGS)-bearing and normal rats were irradiated using a conventional, homogeneous Broad Beam (BB), or Microbeam Radiation Therapy (MRT), then studied by behavioral tests, MRI, and histopathology. A valley dose of 10 Gy deposited between microbeams, delivered by a single port, improved tumor control and median survival time of tumor-bearing rats better than a BB isodose.

View Article and Find Full Text PDF

The synthesis of the first mesogenic donor-acceptor polyoxometalate (POM)-based hybrid is herein described. The structural and electronic properties of the hybrid compound were evaluated through combination of small- and wide-angle X-ray scattering, optical microscopy, electrochemistry and photoluminescence. In the solid state, the compound behaves as a birefringent solid, displaying a lamellar organization in which double-layers of POMs and bis(thiophene)thienothiophene organic donors alternate regularly.

View Article and Find Full Text PDF