Publications by authors named "Bouchareb R"

Aortic stenosis (AS) is the most common valvular heart disease in developed countries, and its prevalence is higher in older patients. Clinical studies have shown gender disparity in the pathogenesis and the progression of aortic stenosis. This disparity has led to several overwhelming questions regarding its impact on the clinical outcomes and treatment of the disease and the requirement of personalized sex-specific approaches for its management.

View Article and Find Full Text PDF
Article Synopsis
  • Fibromuscular dysplasia (FMD) is a rare condition mostly affecting women, characterized by various arterial problems that can lead to serious health issues like hypertension and stroke.* -
  • This study used genetic data from FMD patients and healthy controls to identify 18 gene regulatory networks, with four forming an FMD-related supernetwork affecting arterial health.* -
  • By disrupting this supernetwork in mice, researchers observed symptoms of FMD, revealing insights into the disease's mechanisms and potential new treatment options.*
View Article and Find Full Text PDF

The aim of this research is to study the ability of Cactus leaves to act as a biocoagulants for the removal of lead in water. Different solvents, such as distilled water, NaCl, NaOH, and HCl, were used as chemical activators to extract the active components from the Cactus. The Cactus was utilized as an organic coagulant in five different forms: (i) Cactus juice (CJ); Cactus extract using (ii) distilled water (C-HO); (iii) NaCl at 0.

View Article and Find Full Text PDF

Biohydrogen is considered an alternative energy reserve. Dark fermentation is one of the important green hydrogen production techniques that utilizes organic waste as raw material. It is a promising bioconversion, easy, not expensive, and cost-effective process.

View Article and Find Full Text PDF

The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs.

View Article and Find Full Text PDF

Background: Bioprosthetic valve fracture (BVF) can be used to improve transcatheter heart valve (THV) haemodynamics following a valve-in-valve (ViV) intervention. However, whether BVF should be performed before or after THV deployment and the implications on durability are unknown.  Aims: We sought to assess the impact of BVF timing on long-term THV durability.

View Article and Find Full Text PDF

In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated.

View Article and Find Full Text PDF

Biological pretreatment and enzymatic hydrolysis have a potential role in the economic production of sugars and fuels from starch biomass. In this study, the Inoculum/Substrate (I/S) ratio effect and enzymatic pretreatments of potato peels for biohydrogen production in batch reactors were investigated. Two enzymes, α- and , were tested separately and coexistent.

View Article and Find Full Text PDF

Glomerular endothelial cell (GEC) dysfunction can initiate and contribute to glomerular filtration barrier breakdown. Increased mitochondrial oxidative stress has been suggested as a mechanism resulting in GEC dysfunction in the pathogenesis of some glomerular diseases. Historically the isolation of GECs from in vivo models has been notoriously challenging due to difficulties in isolating pure cultures from glomeruli.

View Article and Find Full Text PDF

Shahzad et al. examined the underlying mechanisms of sterile inflammation in diabetic kidney disease, specifically the role of NLRP3 inflammasome activation in podocytes. Using mouse models with gain-of-function and loss-of-function mutations in podocyte Nlrp3, or caspase-1 loss-of-function mutations in podocytes, they identified that Nlrp3 activation in these cells is central for development of diabetic kidney disease but not solely dependent on canonical mechanisms and caspase-1.

View Article and Find Full Text PDF

Background: Patients with thoracic aortopathy are at increased risk of catastrophic aortic dissection, carrying with it substantial mortality and morbidity. Although granular medial calcinosis (medial microcalcification) has been associated with thoracic aortopathy, its relationship to disease severity has yet to be established.

Methods: One hundred one thoracic aortic specimens were collected from 57 patients with thoracic aortopathy and 18 control subjects.

View Article and Find Full Text PDF

Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation.

View Article and Find Full Text PDF

One of the most important problems affecting the environment today is the inability to adequately treat wastewater containing dyes. Among of the many treatment processes used in the treatment of dye-containing wastewater, photocatalytic based wastewater treatment processes attract the attention of scientists as a new, economically feasible, and promising approach which has been in practice for a few decades. However, in order to use these processes in wider areas, cheap and effective catalysts are still being developed today.

View Article and Find Full Text PDF

Fenton oxidation is an effective and valuable method for wastewater treatment. To inhibit environmental impacts and increase overall reaction efficiencies, it is important to develop advanced catalysts. This paper illustrates an experimental study on the elimination of RR180 dye from synthetic aqueous solutions with raw leonardite and different iron-loaded leonardite powders, Fe(0)-loaded leonardite, and Fe(II)-loaded leonardite.

View Article and Find Full Text PDF

In this study, a hybrid process for leachate wastewater treatment including evaporation and reverse osmosis (RO) membrane or biological treatment systems was suggested. Experiments were performed on a real landfill leachate wastewater. The leachate was subjected to evaporation; as a result, a distillate was obtained containing less organic matter and less substantial amounts of other pollutants, as ammonium salts and total phenols were removed.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is heritable, as revealed by recent GWAS. While polymorphisms linked to increased expression of CACNA1C - encoding the CaV1.2 L-type voltage-gated Ca2+ channel - and increased Ca2+ signaling are associated with CAVD, whether increased Ca2+ influx through the druggable CaV1.

View Article and Find Full Text PDF

This study intended to evaluate and compare the efficiency of electrochemical oxidation (EO), nanofiltration (NF), and reverse osmosis (RO) membranes processes in the treatment of yarn fabric dyeing wastewater (YFDW) in terms of chemical oxygen demand (COD) removal, color removal, salinity reduction, and conductivity removal. EO tests of the textile effluent were conducted under various current densities and solution pH conditions employing a graphite electrode. Membrane filtration experiments were conducted using two different NF membranes: NP010 and NP030 and two distinct RO membranes: BW30 and SW30 flat-sheet membranes.

View Article and Find Full Text PDF

Aortic stenosis (AS) is the most common heart valve disease requiring surgery in developed countries, with a rising global burden associated with aging populations. The predominant cause of AS is believed to be driven by calcific degeneration of the aortic valve and a growing body of evidence suggests that platelets play a major role in this disease pathophysiology. Furthermore, platelets are a player in bioprosthetic valve dysfunction caused by their role in leaflet thrombosis and thickening.

View Article and Find Full Text PDF

This study aims to investigate the treatability of the wastewater generated from the sesame seeds dehulling process by a combination of electrochemical techniques with a membrane filtration system. Chemical oxygen demand (COD) and phenol removal performances were studied for four different cathodes material (iron (Fe), aluminum (Al), platinum (Pt), and boron-doped diamond (BDD)) at different current densities in the electrochemical treatment stage. The maximum removal efficiency was obtained when the BDD electrodes were used.

View Article and Find Full Text PDF

Aims: Increased resistin (Retn) levels are associated with development of cardiovascular diseases. However, the role of Retn in heart failure (HF) is still unclear. Here we probed the functional and molecular mechanism underlying the beneficial effect of Retn deletion in HF.

View Article and Find Full Text PDF

An enhanced and different method for the active coagulant agent extraction from Moringa Oleifera seeds powder (MOSP) was established and compared to the conventional extraction method in distillate water. In the improved method, MOSP were extracted using sodium chloride as solvent at different concentrations to extract more coagulant agent from Moringa Oleifera and enhance coagulation activity. In this study, MOSP were initially processed and oil content was removed to minimize coagulant concentration usage (MOSP-EO).

View Article and Find Full Text PDF

The calcification of aortic valve cells is the hallmark of aortic stenosis and is associated with valve cusp fibrosis. Valve interstitial cells (VICs) play an important role in the calcification process in aortic stenosis through the activation of their dedifferentiation program to osteoblast-like cells. Mouse VICs are a good in vitro tool for the elucidation of the signaling pathways driving the mineralization of the aortic valve cell.

View Article and Find Full Text PDF

Recently, the utilization of wastes, recovery of high value-added products from waste, and their use as raw materials in other industries with the logic of industrial symbiosis has become an important issue. In this study, removal efficiency of Reactive Orange 16 (RO16) dye from aqueous solution was studied using TiO catalyst recycled from an industrial waste effluent. The recycling of TiO waste from a paints manufacturing industry was carried out by sintering the TiO-containing waste.

View Article and Find Full Text PDF

This study analyzed the expression of extracellular matrix (ECM) proteins during aortic valve calcification with mass spectrometry, and further validated in an independent human cohort using RNAseq data. The study reveals that valve calcification is associated with significant disruption in ECM and metabolic pathways, and highlights a strong connection between metabolic markers and ECM remodeling. It also identifies FNDC1 and MXRA5 as novel ECM biomarkers in calcified valves, electing them as potential targets in the development and progression of aortic stenosis.

View Article and Find Full Text PDF

Cardiac fibrosis is characterized by excessive deposition of extracellular matrix proteins and myofibroblast differentiation. Our previous findings have implicated resistin in cardiac fibrosis; however, the molecular mechanisms underlying this process are still unclear. Here we investigated the role of resistin in fibroblast-to-myofibroblast differentiation and elucidated the pathways involved in this process.

View Article and Find Full Text PDF