The structure and size characterization of organic matter (OM) using flow field-flow fractionation (FFFF) is interesting due to the numerous interactions of OM in aquatic systems and water treatment processes. The estimation of hydrodynamic and electrostatic forces involved in the fractionation of OM over different molecular weight cut-off (MWCO) membranes is vital for a better understanding of the FFFF process. This work aims to understand the membrane-OM interactive forces with respect to membrane MWCO, solute molecular weight, flow rates, solution pH and ionic strength.
View Article and Find Full Text PDFTransformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites.
View Article and Find Full Text PDFTwo-line ferrihydrite (2LFh) was aged for 12 years under ambient conditions and sheltered from light in the presence of Lu(III) used as surrogate for trivalent actinides. 2LFh aging produced hematite rhombohedra with overgrown acicular goethite particles. Analysis of the homogeneous suspension by asymmetrical flow field-flow fractionation (AsFlFFF) coupled to ICP-MS indicated that particles have a mean hydrodynamic diameter of about 140 nm and the strong correlation of the Fe and Lu fractograms hinted at a structural association of the lanthanide with the solid phase(s).
View Article and Find Full Text PDFWe studied tracer (Tritiated Water (HTO); Tritium replaces one of the stable hydrogen atoms in the H(2)O molecule) and nanoparticle (quantum dots (QD)) transport by means of column migration experiments and comparison to 3D CFD modeling. Concerning the modeling approach, a natural single fracture was scanned using micro computed tomography (μCT) serving as direct input for the model generation. The 3D simulation does not incorporate any chemical processes besides the molecular diffusion coefficient solely reflecting the impact of fracture heterogeneity on mass (solute and nanoparticles) transport.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2010
In the present study, the sorption of europium and lutetium onto titanium dioxide from aqueous solutions is presented, as a function of pH, ionic strength and concentration. An acid base model for the titanium dioxide surface was determined from potentiometric titrations and zeta-potential measurements. The common intersection point of potentiometric titrations coincided with the isoelectric point from electrokinetic experiments, resulting in a pristine point of zero charge of about 6.
View Article and Find Full Text PDFA straightforward quantification method is presented for the application of asymmetric flow field-flow fractionation (AsFlFFF) combined with inductively coupled plasma mass spectrometry (ICPMS) to the characterization of colloid-borne metal ions and nanoparticles. Reproducibility of the size calibration and recovery of elements are examined. Channel flow fluctuations are observed notably after initiation of the fractionation procedure.
View Article and Find Full Text PDFThe trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.
View Article and Find Full Text PDFThe use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities.
View Article and Find Full Text PDFThe release of metal ions from a coal mining tailing area, Lamphun, Northern Thailand, is studied by leaching tests. Considerable amounts of Mn, Fe, Al, Ni and Co are dissolved in both simulated rain water (pH 4) and 10 mg L(-1) humic acid (HA) solution (Aldrich humic acid, pH 7). Due to the presence of oxidizing pyrite and sulfide minerals, the pH in both leachates decreases down to approximately 3 combined with high sulfate concentrations typical to acid mine drainage (AMD) water composition.
View Article and Find Full Text PDFThe combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (D1) of 1, 4, and 20 microg/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20 pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF).
View Article and Find Full Text PDF