Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected.
View Article and Find Full Text PDFUpregulation of the Wilms' tumour 1 (WT1) gene is common in acute myeloid leukaemia (AML) and is associated with poor prognosis. WT1 generates 12 primary transcripts through different translation initiation sites and alternative splicing. The short WT1 transcripts express abundantly in primary leukaemia samples.
View Article and Find Full Text PDFIdentifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors.
View Article and Find Full Text PDFIntroduction: The implementation of small-molecule and immunotherapies in acute myeloid leukemia (AML) has been challenging due to genetic and epigenetic variability amongst patients. There are many potential mechanisms by which immune cells could influence small-molecule or immunotherapy responses, yet, this area remains understudied.
Methods: Here we performed cell type enrichment analysis from over 560 AML patient bone marrow and peripheral blood samples from the Beat AML dataset to describe the functional immune landscape of AML.
Unlabelled: Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML.
View Article and Find Full Text PDFRisk stratification in acute myeloid leukemia (AML) remains principle in survival prognostication and treatment selection. The 2022 European LeukemiaNet (ELN) recommendations were recently published, with notable updates to risk group assignment. The complexity of risk stratification and comparative outcomes between the 2022 and 2017 ELN guidelines remains unknown.
View Article and Find Full Text PDFDrug resistance in chronic myeloid leukaemia (CML) may occur via mutations in the causative BCR::ABL1 fusion or BCR::ABL1-independent mechanisms. We analysed 48 patients with BCR::ABL1-independent resistance for the presence of secondary fusion genes by RNA sequencing. We identified 10 of the most frequently detected secondary fusions in 21 patients.
View Article and Find Full Text PDFLuxeptinib (CG-806) simultaneously targets FLT3 and select other kinase pathways operative in myeloid malignancies. We investigated the range of kinases it inhibits, its cytotoxicity landscape ex vivo with acute myeloid leukemia (AML) patient samples, and its efficacy in xenograft models. Luxeptinib inhibits wild-type (WT) and many of the clinically relevant mutant forms of FLT3 at low nanomolar concentrations.
View Article and Find Full Text PDFIn this study, we report a differential response of mitogen-activated protein kinase-kinase (MEK) inhibitor trametinib in 20 head and neck squamous cell carcinoma (HNSCC) patients' tumor-derived cell cultures. Relatively sensitive and resistant cases to trametinib were identified using high throughput metabolic assays and validated in extended dose response studies in vitro. High throughput metabolic assays exploring combination therapies with trametinib were subjected to synergy models and maximal synergistic dose analyses.
View Article and Find Full Text PDFTo understand mechanisms of response to BET inhibitors (BETi), we mined the Beat AML functional genomic dataset and performed genome-wide CRISPR screens on BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling (AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi while inhibition antagonized BETi-mediated cytotoxicity.
View Article and Find Full Text PDFInherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium.
View Article and Find Full Text PDFIdentifying resistance mutations in a drug target provides crucial information. Lentiviral transduction creates multiple types of mutations due to the error-prone nature of the HIV-1 reverse transcriptase (RT). Here we optimized and leveraged this property to identify drug resistance mutations, developing a technique we term LentiMutate.
View Article and Find Full Text PDFOur study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance.
View Article and Find Full Text PDFDeregulation of the gene family plays an important role in the pathogenesis of acute myeloid leukemia (AML). The BCL2 inhibitor, venetoclax, has received FDA approval for the treatment of AML. However, upfront and acquired drug resistance ensues due, in part, to the clinical and genetic heterogeneity of AML, highlighting the importance of identifying biomarkers to stratify patients onto the most effective therapies.
View Article and Find Full Text PDFMuch of what is known about the neurotrophic receptor tyrosine kinase (NTRK) genes in cancer was revealed through identification and characterization of activating Trk fusions across many tumor types. A resurgence of interest in these receptors has emerged owing to the realization that they are promising therapeutic targets. The remarkable efficacy of pan-Trk inhibitors larotrectinib and entrectinib in clinical trials led to their accelerated, tissue-agnostic US Food and Drug Administration (FDA) approval for adult and pediatric patients with Trk-driven solid tumors.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2019
While molecular genetic abnormalities can tell us much about the pathogenesis of acute myeloid leukemia (AML), these molecular genetics do not always explain drug resistance or sensitivity, leaving room for other mechanisms of tumor pathogenesis outside of genetic events. The Beat AML 1.0 project was a multicenter project to sequence and functionally query AML samples against over 120 drugs.
View Article and Find Full Text PDF