Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
March 2018
Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications.
View Article and Find Full Text PDFThe photoluminescence of individual CdSe/CdS/ZnS core/shell nanocrystals has been investigated under external forces. After mutual alignment of a correlative atomic force and confocal microscope, individual particles were colocalized and exposed to a series of force cycles by using the tip of the AFM cantilever as a nanoscale piston. Thus, force-dependent changes of photophysical properties could be tracked on a single particle level.
View Article and Find Full Text PDFHybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties.
View Article and Find Full Text PDFN-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity.
View Article and Find Full Text PDFOomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation.
View Article and Find Full Text PDFPlant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete.
View Article and Find Full Text PDFA fully acetylated, soluble CO preparation of mean DP of ca. 7 was perceived with high sensitivity by M. truncatula in a newly designed versatile root elicitation assay.
View Article and Find Full Text PDFBackground: Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1). Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL), a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity.
View Article and Find Full Text PDFOomycetes are a diverse group of filamentous eukaryotic microbes comprising devastating animal and plant pathogens. They share many characteristics with fungi, including polarized hyphal extension and production of spores, but phylogenetics studies have clearly placed oomycetes outside the fungal kingdom, in the kingdom Stramenopila which also includes marine organisms such as diatoms and brown algae. Oomycetes display various specific biochemical features, including sterol metabolism.
View Article and Find Full Text PDFA pathosystem between Aphanomyces euteiches, the causal agent of pea root rot disease, and the model legume Medicago truncatula was developed to gain insights into mechanisms involved in resistance to this oomycete. The F83005.5 French accession and the A17-Jemalong reference line, susceptible and partially resistant, respectively, to A.
View Article and Find Full Text PDFABSTRACT A glycoprotein of 34 kDa (GP 34) was solubilized at acidic pH from the mycelium of Phytophthora parasitica var. nicotianae and was purified by ion exchange and gel permeation chromatography. Whole tobacco plants treated with GP 34 through their roots showed an enhanced lipoxygenase activity as well as hydroxyproline-rich glycoprotein accumulation, indicating that this molecule had elicitor properties.
View Article and Find Full Text PDFChitin is an essential component of fungal cell walls, where it forms a crystalline scaffold, and chitooligosaccharides derived from it are signaling molecules recognized by the hosts of pathogenic fungi. Oomycetes are cellulosic fungus-like microorganisms which most often lack chitin in their cell walls. Here we present the first study of the cell wall of the oomycete Aphanomyces euteiches, a major parasite of legume plants.
View Article and Find Full Text PDFThe cellulose-binding domains (CBDs) in the Phytophthora cellulose-binding elicitor lectin (CBEL) are potent elicitors of plant defence responses. Induction of defence has also been reported in various cellulose-deficient mutants of Arabidopsis thaliana. Based on these observations, we propose a model linking cellulose alteration to defence induction.
View Article and Find Full Text PDFAphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals.
View Article and Find Full Text PDFUnlabelled: The Oomycete genus Aphanomyces houses plant and animal pathogens found in both terrestrial and aquatic habitats. Aphanomyces euteiches Drechs. causes seedling damping off and root rot diseases on many legumes.
View Article and Find Full Text PDFLittle data exist on the mechanism and stability of transformation in Phytophthora parasitica, a major oomycete parasite of plants. Here, we studied the stability of drug-resistant protoplast transformants by analyzing single-zoospore derivatives. We show that the transgenic sequences are not stably integrated into the chromosomes, resulting in the loss of drug resistance in single-zoospore derivatives.
View Article and Find Full Text PDFPurpose: The purpose of the study was to demonstrate that anatomical features of individual motor units of the puborectalis muscle can be detected with non-invasive electromyography (EMG) and to evaluate differences in electrophysiological properties of the puborectalis muscles in a small group of healthy and pathologic subjects.
Methods: Multichannel EMG was recorded by means of a flexible probe applied on the gloved index finger and carrying an array of eight equally spaced (1.15 mm) electrodes.
The cellulose binding elicitor lectin (CBEL) from Phytophthora parasitica nicotianae contains two cellulose binding domains (CBDs) belonging to the Carbohydrate Binding Module1 family, which is found almost exclusively in fungi. The mechanism by which CBEL is perceived by the host plant remains unknown. The role of CBDs in eliciting activity was investigated using modified versions of the protein produced in Escherichia coli or synthesized in planta through the potato virus X expression system.
View Article and Find Full Text PDFPurpose: The purpose of the study was the non-invasive investigation of the innervation zone (IZ) location of the gracilis muscle of both thighs by means of surface electromyography (EMG).
Materials And Methods: Multichannel EMG signals were detected by means of a flexible array of 16 equally spaced silver bar electrodes. Tests were performed on both gracilis muscles on 15 subjects.
The estimation of fibre length in jaw-elevator muscles is important for modelling studies and clinical applications. The objective of this study was to identify, from multi-channel surface EMG recordings, the main innervation zone(s) of the superficial masseter and anterior temporalis muscles, and to estimate the fibre length of these muscles. Surface EMG signals were collected from 13 subjects with a 16-electrode linear array.
View Article and Find Full Text PDFThis study addresses methodological issues on surface electromyographic (EMG) signal recording from jaw elevator muscles. The aims were (i) to investigate the sensitivity to electrode displacements of amplitude and spectral surface EMG variables, (ii) to analyse if this sensitivity is affected by the inter-electrode distance of the bipolar recording, and (iii) to investigate the effect of inter-electrode distance on the estimated amplitude and spectral EMG variables. The superficial masseter and anterior temporalis muscles of 13 subjects were investigated by means of a linear electrode array.
View Article and Find Full Text PDFFunctional recovery of transplanted hand can be evaluated clinically but until now there has been no direct assessment of muscle control. In October 2000 we transplanted the right hand of a brain-dead man aged 43 onto a man aged 35 who had lost his right dominant hand 22 years before. Starting from day 205 after the transplant, multi-channel surface electromyographic (EMG) signals were recorded from intrinsic muscles of the transplanted hand in order to assess their degree of reinnervation.
View Article and Find Full Text PDFThe use of mono- and bi-dimensional electromyogram (EMG) electrode arrays for the assessment of the neuromuscular system can provide an insight into muscle physiology not achieved with classical bipolar surface EMG. Among the advantages of multichannel EMG detection, there is a) the possibility of estimating muscle fibre conduction velocity, even during motor tasks, and b) the possibility to increase the number of detection points on a muscle, improving the performance of pattern-based EMG decomposition methods. For these reasons, the development and use of multichannel surface EMG devices and techniques were chosen as the primary goals within the European RTD Project 'Neuromuscular assessment in the elderly worker' (NEW).
View Article and Find Full Text PDFIn this paper, we propose techniques of surface electromyographic (EMG) signal detection and processing for the assessment of muscle fiber conduction velocity (CV) during dynamic contractions involving fast movements. The main objectives of the study are: 1) to present multielectrode EMG detection systems specifically designed for dynamic conditions (in particular, for CV estimation); 2) to propose a novel multichannel CV estimation method for application to short EMG signal bursts; and 3) to validate on experimental signals different choices of the processing parameters. Linear adhesive arrays of electrodes are presented for multichannel surface EMG detection during movement.
View Article and Find Full Text PDF