The direct co-conversion of methane and carbon dioxide into valuable chemicals has been a longstanding scientific pursuit for carbon neutrality and combating climate change. Herein, we present a photo-driven chemical process that reforms these two major greenhouse gases together to generate green methanol and CO, two high-valued industrial chemicals. Isotopic labeling and control experiments indicate an oxygen-atom-graft occurs, wherein CO transfers one O into the C-H bond of CH via photo-activated interfacial catalysis with AuPd nanoparticles supported on GaN.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
In this work, we present an in situ method to probe the evolution of photoelectrochemically driven surface oxidation on photoanodes during active operation in aqueous solutions. A standard solution of KFe(CN)-KPi was utilized to benchmark the photocurrent and assess progressive surface oxidation on TaN in various oxidizing solutions. In this manner, a proportional increase in the surface oxygen concentration was detected with respect to oxidation time and further correlated with a continuous decline in the photocurrent.
View Article and Find Full Text PDFSemiconductor-liquid interfaces are essential to the operation of many energy devices. Crucially, the operational characteristics of such devices are dependent upon both the flat band potential and doping concentration present in their solid-state semiconducting region. Traditionally, capacitive "linear" Mott-Schottky plots have often been utilized to extract these two parameters.
View Article and Find Full Text PDF