Publications by authors named "Botir Sagdullaev"

Anterior Uveitis (AU) is the inflammation of the anterior part of the eye, the iris and ciliary body and is strongly associated with HLA-B*27. We report AU exome sequencing results from eight independent cohorts consisting of 3,850 cases and 916,549 controls. We identify common genome-wide significant loci in HLA-B (OR = 3.

View Article and Find Full Text PDF

Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction.

View Article and Find Full Text PDF

Genetic disorders that present during development make treatment strategies particularly challenging because there is a need to disentangle primary pathophysiology from downstream dysfunction caused at key developmental stages. To provide a deeper insight into this question, we studied a mouse model of X-linked juvenile retinoschisis, an early-onset inherited condition caused by mutations in the gene encoding retinoschisin (RS1) and characterized by cystic retinal lesions and early visual deficits. Using an unbiased approach in expressing the fast intracellular calcium indicator GCaMP6f in neuronal, glial, and vascular cells of the retina of RS1-deficient male mice, we found that initial cyst formation is paralleled by the appearance of aberrant spontaneous neuroglial signals as early as postnatal day 15, when eyes normally open.

View Article and Find Full Text PDF

Abnormalities in brain glucose metabolism and accumulation of abnormal protein deposits called plaques and tangles are neuropathological hallmarks of Alzheimer's disease (AD), but their relationship to disease pathogenesis and to each other remains unclear. Here we show that succinylation, a metabolism-associated post-translational protein modification (PTM), provides a potential link between abnormal metabolism and AD pathology. We quantified the lysine succinylomes and proteomes from brains of individuals with AD, and healthy controls.

View Article and Find Full Text PDF

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes.

View Article and Find Full Text PDF

Endothelial cells (ECs) are key players in the development and maintenance of the vascular tree, the establishment of the blood-brain barrier and control of blood flow. Disruption in ECs is an early and active component of vascular pathogenesis. However, our ability to selectively target ECs in the CNS for identification and manipulation is limited.

View Article and Find Full Text PDF

Purpose: Disruption in blood supply to active retinal circuits is the earliest hallmark of diabetic retinopathy (DR) and has been primarily attributed to vascular deficiency. However, accumulating evidence supports an early role for a disrupted neuronal function in blood flow impairment. Here, we tested the hypothesis that selectively stimulating cholinergic neurons could restore neurovascular signaling to preserve the capillary circulation in DR.

View Article and Find Full Text PDF

Pericytes are a unique class of mural cells essential for angiogenesis, maintenance of the vasculature and are key players in microvascular pathology. However, their diversity and specific roles are poorly understood, limiting our insight into vascular physiology and the ability to develop effective therapies. Here, in the mouse retina, a tractable model of the CNS, we evaluated distinct classes of mural cells along the vascular tree for both structural characterization and physiological manipulation of blood flow.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina.

View Article and Find Full Text PDF

Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina.

View Article and Find Full Text PDF

The nervous system demands an adequate oxygen and metabolite exchange, making pericytes (PCs), the only vasoactive cells on the capillaries, essential to neural function. Loss of PCs is a hallmark of multiple diseases, including diabetes, Alzheimer's, amyotrophic lateral sclerosis (ALS) and Parkinson's. Platelet-derived growth factor receptors (PDGFRs) have been shown to be critical to PC function and survival.

View Article and Find Full Text PDF

X-linked juvenile retinoschisis (XLRS) is an early-onset inherited condition that affects primarily males and is characterized by cystic lesions of the inner retina, decreased visual acuity and contrast sensitivity and a selective reduction of the electroretinogram (ERG) b-wave. Although XLRS is genetically heterogeneous, all mouse models developed to date involve engineered or spontaneous null mutations. In the present study, we have studied three new Rs1 mutant mouse models: (1) a knockout with inserted lacZ reporter gene; (2) a C59S point mutant substitution and (3) an R141C point mutant substitution.

View Article and Find Full Text PDF

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4).

View Article and Find Full Text PDF

In the retina, diverse functions of neuronal gap junctions (GJs) have been established. However, the distribution and function of vascular GJs are less clear. Here in the mouse retina whole mounts, we combined structural immunohistochemical analysis and a functional assessment of cellular coupling with a GJ-permeable tracer Neurobiotin to determine distribution patterns of three major vascular connexins.

View Article and Find Full Text PDF

Changes in neuronal activity alter blood flow to match energy demand with the supply of oxygen and nutrients. This functional hyperemia is maintained by interactions between neurons, vascular cells, and glia. However, how changing neuronal activity prevalent at the onset of neurodegenerative disease affects neurovascular elements is unclear.

View Article and Find Full Text PDF

Cellular communication through chemical synapses is determined by the nature of the neurotransmitter and the composition of postsynaptic receptors. In the excitatory synapse between bipolar and ganglion cells of the retina, postsynaptic AMPA receptors mediate resting activity. During evoked response, however, more abundant and sustained levels of glutamate also activate GluN2B-containing NMDA receptors (NMDARs).

View Article and Find Full Text PDF

Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells.

View Article and Find Full Text PDF

Adequate blood flow is essential to brain function, and its disruption is an early indicator in diseases, such as stroke and diabetes. However, the mechanisms contributing to this impairment remain unclear. To address this gap, in the diabetic and nondiabetic male mouse retina, we combined an unbiased longitudinal assessment of vasomotor activity along a genetically defined vascular network with pharmacological and immunohistochemical analyses of pericytes, the capillary vasomotor elements.

View Article and Find Full Text PDF

Optogenetic techniques are a powerful tool for determining the role of individual functional components within complex neural circuits. By genetically targeting specific cell types, neural mechanisms can be actively manipulated to gain a better understanding of their origin and function, both in health and disease. The potential of optogenetics is not limited to answering biological questions, as it is also a promising therapeutic approach for neurological diseases.

View Article and Find Full Text PDF

Retinal degeneration (RD) encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in RD.

View Article and Find Full Text PDF

Dopaminergic amacrine cells (DACs) release dopamine in response to light-driven synaptic inputs, and are critical to retinal light adaptation. Retinal degeneration (RD) compromises the light responsiveness of the retina and, subsequently, dopamine metabolism is impaired. As RD progresses, retinal neurons exhibit aberrant activity, driven by AII amacrine cells, a primary target of the retinal dopaminergic network.

View Article and Find Full Text PDF

In retinal degenerative disease (RD), the diminished light signal from dying photoreceptors has been considered the sole cause of visual impairment. Recent studies show a 10-fold increase in spontaneous activity in the RD network, challenging this paradigm. This aberrant activity forms a new barrier for the light signal, and not only exacerbates the loss of vision, but also may stand in the way of visual restoration.

View Article and Find Full Text PDF

Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30-60 days, to determine how this aberrant activity correlates with morphology.

View Article and Find Full Text PDF

Working with delicate tissue can be a complicating factor when performing immunohistochemical assessment. Here, we present a method that utilizes a ring-supported hydrophilized PTFE membrane to provide structural support to both living and fixed tissue during immunohistochemical processing, which allows for the use of a variety of protocols that would otherwise cause damage to the tissue. First, this is demonstrated with bolus loading of fluorescent markers into living retinal tissue.

View Article and Find Full Text PDF