Colored polymer microspheres have attracted significant attention in both academia and industry due to their unique optical properties and extensive application potential. However, achieving a uniform distribution of dyes within these microspheres remains a challenge, particularly when heavy concentrations of dye are used, as this can lead to aggregation or delamination, adversely affecting their application. Additionally, many dyes are prone to degradation or fading when exposed to light, heat, or chemicals, which compromises the long-term color stability of the microspheres.
View Article and Find Full Text PDFThe rapid development of mechano-responsive fluorescence has been driven by its promising applications in the fields of sensors, information encryption, and anti-counterfeiting. However, designing mechanophores that can exhibit fluorescence changes under relatively low force remains challenging. In this study, a mechano-responsive fluorescent gel was developed using a tetraphenylethylene derivative as a cross-linker, producing a dynamic covalent network that exhibits increased fluorescence under tensile stress.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
The construction of humidity-responsive fluorescent materials with reversibility, specificity, and sensitivity is of great importance for the development of information encryption, fluorescence patterning, and sensors. Nevertheless, to date, the application of these materials has been limited by their slow response rate and nonspecificity. Herein, a humidity-responsive fluorescence system was designed and assembled to achieve a rapid, reversible, and specific moisture response.
View Article and Find Full Text PDFIn this work, through the coordination of C symmetric azopyridine ligands and Ag(i), coordination polymers with azo groups on the main chain were prepared. The trans coordination polymer formed an organogel with a network of nanofibers at low critical gelation concentrations, and it exhibited the abilities of self-healing and multi-stimuli response to heating, light, mechanical shearing, and chemicals due to the presence of dynamic coordinating bonds. On the other hand, the cis coordination polymer was found to assemble into nanoparticles to give a responsive colloid, which can produce fibrous precipitation in several days upon visible light irradiation due to the isomerization of the azo groups.
View Article and Find Full Text PDFIn this work, an AIE luminogen-based hydrogel with temperature-responsive fluorescence was designed and synthesized. The polymeric hydrogel consisted of a supramolecular network through coordination and ionic interactions. When the temperature was decreased, due to the motion restriction of the polyacrylic acid macromolecular segments and the enhancement in ionic interaction, the hydrogel exhibited a blue-shift in the fluorescence emission peak and increase in the fluorescence intensity, resulting in the visualization of fluorescence changes.
View Article and Find Full Text PDFFunctionalized Janus nanoparticles have received increasing interest due to their anisotropic shape and the particular utility in biomedicine areas. In this work, a simple and efficient method was developed to prepare fluorescent/magnetic composite Janus nanoparticles constituted of fluorescent polyurethane and hydrophobic nano Fe₃O₄. Two kinds of fluorescent polyurethane prepolymers were synthesized by the copolymerization of fluorescent dye monomers, and the fluorescent/magnetic nanoparticles were fabricated in one-pot via the process of mini-emulsification and self-assembly.
View Article and Find Full Text PDFMetal-organic gels showing potential application in catalysis have received much concern. In this work, we designed and synthesized two metal-organic gels based on coordination between Fe and pyridine ligands at room temperature. The gels were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to reveal their assembly structures and morphologies, and it was found the metal-organic gel derived from di-topic ligand was composed of three-dimensional network of nanofibers, while the gel derived from tri-topic ligand was constituted of sponge-like structure with amorphous phase.
View Article and Find Full Text PDFIn this study, a novel self-assembled metal-organic gel was synthesized from ferric nitrate and a di-topic ligand, bis(3-pyridyl)terephthalate. The gel consisted of a three dimensional network of uniform nanofibers. The gelation exhibited high selectivity to Fe(iii) based on metal-ligand coordination.
View Article and Find Full Text PDFPoly(N,N'-methylenebisacrylamide-4-vinylpyridine) (P(MBA-4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5-15 nm were dispersed throughout the core of P(MBA-4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time.
View Article and Find Full Text PDFA novel fabrication method of polymer tubes with simple operation process and high yield is presented. N,N'-methylene bisacrylamide (MBA) polymer microtubes are fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization using MBA self-assembled fibers as both the template and monomer source. The resulting products are characterized by SEM, TEM, FTIR, and element analysis.
View Article and Find Full Text PDF