Publications by authors named "Botchan M"

Liquid-liquid phase separation (LLPS) of intrinsically disordered regions (IDRs) in proteins can drive the formation of membraneless compartments in cells. Phase-separated structures enrich for specific partner proteins and exclude others. Previously, we showed that the IDRs of metazoan DNA replication initiators drive DNA-dependent phase separation in vitro and chromosome binding in vivo, and that initiator condensates selectively recruit replication-specific partner proteins (Parker et al.

View Article and Find Full Text PDF

The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.

View Article and Find Full Text PDF

The initiation of DNA replication in metazoans occurs at thousands of chromosomal sites known as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-assemble to load the Mcm2-7 replicative helicase onto chromatin. Current replication models envisage a linear arrangement of isolated origins functioning autonomously; the extent of inter-origin organization and communication is unknown.

View Article and Find Full Text PDF

In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement.

View Article and Find Full Text PDF

In eukaryotes, the heterohexameric origin recognition complex (ORC) coordinates replication onset by facilitating the recruitment and loading of the minichromosome maintenance 2-7 (Mcm2-7) replicative helicase onto DNA to license origins. ORC can adopt an autoinhibited configuration that is predicted to prevent Mcm2-7 loading; how the complex is activated and whether other ORC homologs can assume this state are not known. Using chemical cross-linking and mass spectrometry, biochemical assays, and electron microscopy (EM), we show that the autoinhibited state of ORC is populated in solution, and that human ORC can also adopt this form.

View Article and Find Full Text PDF

Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly.

View Article and Find Full Text PDF

Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG.

View Article and Find Full Text PDF

A framework for open discourse on the use of CRISPR-Cas9 technology to manipulate the human genome is urgently needed

View Article and Find Full Text PDF

Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.

View Article and Find Full Text PDF

DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding.

View Article and Find Full Text PDF

Lethal malignant brain tumors (lmbt) result from the loss of the conserved transcriptional repressor l(3)mbt, in Drosophila melanogaster. Similar mutations in the human homolog L3MBTL1 correlate with some cancers. The protein's C-terminal MBT repeats bind mono and dimethylated histones in vitro, which could influence recruitment of L3MBTL1 to its target sites.

View Article and Find Full Text PDF

The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail.

View Article and Find Full Text PDF

In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex.

View Article and Find Full Text PDF

The eukaryotic replicative helicase, the minichromosome maintenance (MCM) complex, is composed of six distinct, but related, subunits MCM(2-7). The relationship between the sequences of the subunits indicates that they are derived from a common ancestor and indeed, present-day archaea possess a homohexameric MCM. Recent progress in the biochemical and structural studies of both eukaryal and archaeal MCM complexes are beginning to shed light on the mechanisms of action of this key component of the replisome.

View Article and Find Full Text PDF

The replication of eukaryote chromosomes slows down when DNA is damaged and the proteins that work at the fork (the replisome) are known targets for the signaling pathways that mediate such responses critical for accurate genomic inheritance. However, the molecular mechanisms and details of how this response is mediated are poorly understood. In this report we show that the activity of replisome helicase, the Cdc45/MCM2-7/GINS (CMG) complex, can be inhibited by protein phosphorylation.

View Article and Find Full Text PDF

The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood.

View Article and Find Full Text PDF

The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex.

View Article and Find Full Text PDF

The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT.

View Article and Find Full Text PDF

Two central steps for initiating eukaryotic DNA replication involve loading of the Mcm2-7 helicase onto double-stranded DNA and its activation by GINS-Cdc45. To better understand these events, we determined the structures of Mcm2-7 and the CMG complex by using single-particle electron microscopy. Mcm2-7 adopts two conformations--a lock-washer-shaped spiral state and a planar, gapped-ring form--in which Mcm2 and Mcm5 flank a breach in the helicase perimeter.

View Article and Find Full Text PDF

Eukaryotic cells license far more origins than are actually used for DNA replication, thereby generating a large number of dormant origins. Accumulating evidence suggests that such origins play a role in chromosome stability and tumor suppression, though the underlying mechanism is largely unknown. Here, we show that a loss of dormant origins results in an increased number of stalled replication forks, even in unchallenged S phase in primary mouse fibroblasts derived from embryos homozygous for the Mcm4(Chaos3) allele.

View Article and Find Full Text PDF

The copying of chromosomal DNA initiates from a single nucleoprotein assembly called the prereplication complex. New findings in a recent issue of Molecular Cell (Yardimci et al., 2010) reveal that this complex dissolves into two independent replisomes that move away from each other as DNA synthesis ensues.

View Article and Find Full Text PDF

Maternally contributed mRNAs and proteins control the initial stages of development following fertilization. During this time, most of the zygotic genome remains transcriptionally silent. The initiation of widespread zygotic transcription is coordinated with the degradation of maternally provided mRNAs at the maternal-to-zygotic transition (MZT).

View Article and Find Full Text PDF