Determining the genetic contribution of susceptibility to severe SARS-CoV-2 infection outcomes is important for public health measures and individualized treatment. Through intense research on this topic, several hundred genes have been implicated as possibly contributing to the severe infection phenotype(s); however, the findings are complex and appear to be population-dependent. We aimed to determine the contribution of human rare genetic variants associated with a severe outcome of SARS-CoV-2 infections and their burden in the Slovenian population.
View Article and Find Full Text PDFBackground: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes.
Methods: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry.
Background: The relationship between anti-SARS-CoV-2 humoral immune response, pathogenic inflammation, lymphocytes and fatal COVID-19 is poorly understood.
Methods: A longitudinal prospective cohort of hospitalised patients with COVID-19 (n=254) was followed up to 35 days after admission (median, 8 days). We measured early anti-SARS-CoV-2 S1 antibody IgG levels and dynamic (698 samples) of quantitative circulating T-, B- and natural killer lymphocyte subsets and serum interleukin-6 (IL-6) response.
Background: As of writing, there are no publications pertaining to the prediction of COVID-19-related outcomes and length of stay in patients from Slovene hospitals.
Objectives: To evaluate the length of regular ward and ICU stays and assess the survival of COVID-19 patients to develop better prediction models to forecast hospital capacity and staffing demands in possible further pandemic peaks.
Methods: In this retrospective, single-site study we analysed the length of stay and survival of all patients, hospitalized due to the novel coronavirus (COVID-19) at the peak of the second wave, between November 18th 2020 and January 27th 2021 at the University Clinic Golnik, Slovenia.
In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma.
View Article and Find Full Text PDFWater channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. It is predominantly expressed in astrocytes at the blood-brain and blood-liquor interfaces. Although several AQP4 isoforms have been identified in the mammalian brain, two, AQP4a (M1) and AQP4c (M23), have been confirmed to cluster into plasma membrane supramolecular structures, termed orthogonal arrays of particles (OAPs) and to enhance water transport through the plasma membrane.
View Article and Find Full Text PDFKetamine is an anesthetic that exhibits analgesic, psychotomimetic, and rapid antidepressant effects that are of particular neuropharmacological interest. Recent studies revealed astrocytic Ca(2+) signaling and regulated exocytosis as ketamine-targeted processes. Thus high-resolution cell-attached membrane capacitance measurements were performed to examine the influence of ketamine on individual vesicle interactions with the plasma membrane in cultured rat astrocytes.
View Article and Find Full Text PDFChannels (Austin)
February 2016
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions.
View Article and Find Full Text PDFHormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events.
View Article and Find Full Text PDFHow cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.
View Article and Find Full Text PDFIn order to understand exocytosis and endocytosis, it is necessary to study these processes directly. An elegant way to do this is by measuring plasma membrane capacitance (C(m)), a parameter proportional to cell surface area, the fluctuations of which are due to fusion and fission of secretory and other vesicles. Here we describe protocols that enable high-resolution C(m) measurements in macroscopic and microscopic modes.
View Article and Find Full Text PDFSince the 1970s, much effort was been expended researching mechanisms of regulated exocytosis. Early work focused mainly on the role of proteins. Most notably the discovery of SNARE proteins in the 1980s and the zippering hypothesis brought us much closer to understanding the complex interactions in membrane fusion between vesicle and plasma membranes, a pivotal component of regulated exocytosis.
View Article and Find Full Text PDFNeuroendocrine secretory vesicles discharge their cargo in response to a stimulus, but the nature of this event is poorly understood. We studied the release of the pituitary hormone prolactin by hypotonicity, because this hormone also contributes to osmoregulation. In perfused rat lactotrophs, hypotonicity resulted in a transient increase followed by a sustained depression of prolactin release, as monitored by radioimmunoassay.
View Article and Find Full Text PDF