Publications by authors named "Bossin L"

The aim of this work is to investigate the dose rate dependence of thermoluminescence and optically stimulated luminescence detectors (TLDs and OSLDs) in a wide uniform ultra-high dose rate electron beam and demonstrate the potential use of TLDs and OSLDs to correct the ion recombination in air-filled ionization chambers. This study avoids previously reported complications related to the field size and homogeneity.Two types of OSLDs (BeO and AlO:C) and three types of TLDs (LiF:Mg,Ti, LiF:Mg,Cu,P, CaF:Tm) were irradiated simultaneously in a uniform 16 MeV electron beam generated by a clinically decommissioned C-Arm LINAC, modified to deliver doses per pulse between 8.

View Article and Find Full Text PDF

The Paul Scherrer Institute (PSI) is the largest research institute for natural and engineering sciences in Switzerland. PSI develops, builds and operates complex large research facilities. Every year, >2400 scientists from Switzerland and around the world come to PSI to use the facilities and to carry out experiments.

View Article and Find Full Text PDF

This work investigates the use of AlO:C and AlO:C,Mg optically stimulated luminescence (OSL) detectors to determine both the dose and the radiation quality in light ion beams. The radiation quality is here expressed through either the linear energy transfer (LET) or the closely related metric, which depends on the particle's speed and effective charge. The derived LET andvalues are applied to improve the dosimetry in light ion beams.

View Article and Find Full Text PDF

The objective of this work is to review and assess the potential of MgB4O7:Ce,Li to fill in the gaps where the need for a new material for optically stimulated luminescence (OSL) dosimetry has been identified. We offer a critical assessment of the operational properties of MgB4O7:Ce,Li for OSL dosimetry, as reviewed in the literature and complemented by measurements of thermoluminescence spectroscopy, sensitivity, thermal stability, lifetime of the luminescence emission, dose response at high doses (>1000 Gy), fading and bleachability. Overall, compared with Al2O3:C, for example, MgB4O7:Ce,Li shows a comparable OSL signal intensity following exposure to ionizing radiation, a higher saturation limit (ca 7000 Gy) and a shorter luminescence lifetime (31.

View Article and Find Full Text PDF

The objective of this study was to improve the precision of linear energy transfer (LET) measurements using [Formula: see text] optically stimulated luminescence detectors (OSLDs) in proton beams, and, with that, improve OSL dosimetry by correcting the readout for the LET-dependent ionization quenching. The OSLDs were irradiated in spot-scanning proton beams at different doses for fluence-averaged LET values in the (0.4-6.

View Article and Find Full Text PDF

The present study constitutes the first part of a meteorite project, currently in progress, towards the full and thorough dosimetric study (TL and OSL) of two different meteorites of recent fall, Norton County and Holbrook. Both meteorites exhibit strong TL sensitivity, linear dose response and no saturation for doses up to 2kGy. However, the two meteorites exhibited a very dissimilar TL glow curve and behaviour regarding sensitization and fading.

View Article and Find Full Text PDF

Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation.

View Article and Find Full Text PDF