Publications by authors named "Bosshard H"

This manuscript chronicles the evolution of software used originally to control a diffractometer at a macromolecular crystallography beamline. The system has been augmented and rewritten. A modular and carefully organized suite of programs now handles the whole experimental environment from a single vantage point.

View Article and Find Full Text PDF

Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds.

View Article and Find Full Text PDF

The effect of low molecular-weight compounds on the equilibrium constant K(A) can be used to explore the energetics and molecular mechanism of protein-DNA interactions. Here we use the complex composed of the integrase Tn916 DNA-binding domain and its target DNA duplex to investigate the effects of salt and the nonionic osmolytes glycerol and sorbitol on sequence-specific protein-DNA association. Increasing Na(+) concentration from 0.

View Article and Find Full Text PDF

Ankyrin repeats (AR) are 33-residue motifs containing a beta-turn, followed by two alpha-helices connected by a loop. AR occur in tandem arrangements and stack side-by-side to form elongated domains involved in very different cellular tasks. Recently, consensus libraries of AR repeats were constructed.

View Article and Find Full Text PDF

The pH-dependent stability of a protein is strongly affected by electrostatic interactions between ionizable residues in the folded as well as unfolded state. Here we characterize the individual contributions of charged Glu and His residues to stability and determine the NMR structure of the designed, heterodimeric leucine zipper AB consisting of an acidic A chain and a basic B chain. Thermodynamic parameters are compared with those of the homologous leucine zipper AB(SS) in which the A and B chains are disulfide-linked.

View Article and Find Full Text PDF

Salt bridges in proteins are bonds between oppositely charged residues that are sufficiently close to each other to experience electrostatic attraction. They contribute to protein structure and to the specificity of interaction of proteins with other biomolecules, but in doing so they need not necessarily increase a protein's free energy of unfolding. The net electrostatic free energy of a salt bridge can be partitioned into three components: charge-charge interactions, interactions of charges with permanent dipoles, and desolvation of charges.

View Article and Find Full Text PDF

Human (HIV-1) and simian (SIV) immunodeficiency virus fusion with the host cell is promoted by the receptor-triggered refolding of the gp41 envelope protein into a stable trimer-of-hairpins structure that brings viral and cellular membranes into close proximity. The core of this hairpin structure is a six-helix bundle in which an inner homotrimeric coiled coil is buttressed by three antiparallel outer HR2 helices. We have used stopped-flow circular dichroism spectroscopy to characterize the unfolding and refolding kinetics of the six-helix bundle using the HIV-1 and SIV N34(L6)C28 polypeptides.

View Article and Find Full Text PDF

Basic leucine zipper (bZIP) transcription factors are dimeric proteins that recognize dyadic and mostly palindromic DNA sites. Dimerization of bZIP transcription factor GCN4 is linked to the folding of its C-terminal leucine zipper domain. However, monomeric GCN4, lacking a folded leucine zipper, also recognizes the DNA site with dimerization taking place on the DNA.

View Article and Find Full Text PDF

Electrostatic interactions play a complex role in stabilizing proteins. Here, we present a rigorous thermodynamic analysis of the contribution of individual Glu and His residues to the relative pH-dependent stability of the designed disulfide-linked leucine zipper AB(SS). The contribution of an ionized side-chain to the pH-dependent stability is related to the shift of the pK(a) induced by folding of the coiled coil structure.

View Article and Find Full Text PDF

Sequence-specific DNA recognition by bacterial integrase Tn916 involves structural rearrangements of both the protein and the DNA duplex. Energetic contributions from changes of conformation, thermal motions and soft vibrational modi of the protein, the DNA, and the complex significantly influence the energetic profile of protein-DNA association. Understanding the energetics of such a complicated system requires not only a detailed calorimetric investigation of the association reaction but also of the components in isolation.

View Article and Find Full Text PDF

The DNA binding domain of the transposon Tn916 integrase (INT-DBD) binds to its DNA target site by positioning the face of a three-stranded antiparallel beta-sheet within the major groove. Binding of INT-DBD to a 13 base pair duplex DNA target site was studied by isothermal titration calorimetry, differential scanning calorimetry, thermal melting followed by circular dichroism spectroscopy, and fluorescence spectroscopy. The observed heat capacity change accompanying the association reaction (DeltaC(p)) is temperature-dependent, decreasing from -1.

View Article and Find Full Text PDF

Interhelical salt bridges are common in leucine zippers and are thought to stabilize the coiled coil conformation. Here we present a detailed thermodynamic investigation of the designed, disulfide-linked leucine zipper AB(SS) whose high-resolution NMR structure shows six interhelical ion pairs between heptad positions g of one helix and e' of the other helix but no ion pairing within single helices. The average pK(a) value of the Glu side chain carboxyl groups of AB(SS) is slightly higher than the pK(a) of a freely accessible Glu in an unfolded peptide [Marti, D.

View Article and Find Full Text PDF

The use of conformational ensembles provided by nuclear magnetic resonance (NMR) experiments or generated by molecular dynamics (MD) simulations has been regarded as a useful approach to account for protein motions in the context of pK(a) calculations, yet the idea has been tested occasionally. This is the first report of systematic comparison of pK(a) estimates computed from long multiple MD simulations and NMR ensembles. As model systems, a synthetic leucine zipper, the naturally occurring coiled coil GCN4, and barnase were used.

View Article and Find Full Text PDF

Biological experiments at the solid/liquid interface, in general, require surfaces with a thin layer of purified molecules, which often represent precious material. Here, we have devised a method to extract proteins with high selectivity from crude biological sample solutions and place them on a surface in a functional, arbitrary pattern. This method, called affinity-contact printing (alphaCP), uses a structured elastomer derivatized with ligands against the target molecules.

View Article and Find Full Text PDF

Induced fit explains why biomolecules can bind together even if they are not optimized for binding. However, induced fit can lead to a kinetic bottleneck and does not describe every interaction in the absence of prior complementarity. Preselection of a fitting conformer is an alternative to induced fit.

View Article and Find Full Text PDF

Coiled coils are simple models for studying the association of two polypeptide chains to form a folded protein. Previous work has shown that the folding of a coiled coil can be described by a two-state transition between two unfolded monomeric peptide chains and a folded coiled coil dimer. Here we report the thermodynamic activation parameters for the folding and unfolding of two unrelated coiled coils: C62GCN4 and A(2).

View Article and Find Full Text PDF

Residues of opposite charge often populate heptad positions g (heptad i on chain 1) and e' (heptad i + 1 on chain 2) in dimeric coiled coils and may stabilize the dimer by formation of interchain ion pairs. To investigate the contribution to stability of such electrostatic interactions we have designed a disulfide-linked heterodimeric zipper (AB zipper) consisting of the acidic chain Ac-E-VAQLEKE-VAQAEAE-NYQLEQE-VAQLEHE-CG-NH(2) and the basic chain Ac-E-VQALKKR-VQALKAR-NYAAKQK-VQALRHK-CG-NH(2) in which all e and g positions are occupied by either E or K/R to form a maximum of seven interhelical salt bridges. Temperature-induced denaturation experiments monitored by circular dichroism reveal a stable coiled coil conformation below 50 degrees C and in the pH range 1.

View Article and Find Full Text PDF

Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil.

View Article and Find Full Text PDF

Isothermal titration calorimetry has been used to investigate the thermodynamic parameters of the binding of thymidine (dT) and ATP to herpes simplex virus type 1 thymidine kinase (HSV1 TK). Binding follows a sequential pathway in which dT binds first and ATP second. The free enzyme does not bind ATP, whose binding site becomes only accessible in the HSV1 TK.

View Article and Find Full Text PDF

The principles of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) are reviewed together with the basic thermodynamic formalism on which the two techniques are based. Although ITC is particularly suitable to follow the energetics of an association reaction between biomolecules, the combination of ITC and DSC provides a more comprehensive description of the thermodynamics of an associating system. The reason is that the parameters DeltaG, DeltaH, DeltaS, and DeltaCp obtained from ITC are global properties of the system under study.

View Article and Find Full Text PDF

Conformational adaptation between antigen and antibody can modulate the antibody specificity. The phenomenon has often been proposed to result from an 'induced fit', which implies that the binding reaction induces a conformational change in the antigen and the antibody. Thus, an 'induced fit' requires initial complex formation followed by a conformational change in the complex.

View Article and Find Full Text PDF

The dimer interface of a leucine zipper involves hydrophobic as well as electrostatic interactions between the component helices. Here we ask how hydrophobic effects and electrostatic repulsion balance the rate of folding and thermodynamic stability of a designed dimeric leucine zipper formed by the acidic peptide A that contains four repeating sequence units, (abcdefg)4. The aliphatic a and d residues of peptide A were the same as in the GCN4 leucine zipper but the e and g positions were occupied by Glu, which prevented folding above pH 6 because of electrostatic repulsion.

View Article and Find Full Text PDF

Ribosome display was applied for affinity selection of antibody single-chain fragments (scFv) from a diverse library generated from mice immunized with a variant peptide of the transcription factor GCN4 dimerization domain. After three rounds of ribosome display, positive scFvs were isolated and characterized. Several different scFvs were selected, but those in the largest group were closely related to each other and differed in 0 to 5 amino acid residues with respect to their consensus sequence, the likely common progenitor.

View Article and Find Full Text PDF

Single-chain Fv (scFv) fragments of antibodies have become important analytical and therapeutic tools in biology and medicine. The reaction of scFv fragments has not been well-characterized with respect to the energetics and kinetics of antigen binding. This paper describes the thermodynamic and kinetic behavior of the high-affinity scFv fragment SW1 directed against the dimeric leucine zipper domain of the yeast transcription factor GCN4.

View Article and Find Full Text PDF