Vitamin B9 (folate)/B12 (cobalamin) deficiency is known to induce brain structural and/or functional retardations. In many countries, folate supplementation, targeting the most severe outcomes such as neural tube defects, is discontinued after the first trimester. However, adverse effects may occur after birth because of some mild misregulations.
View Article and Find Full Text PDFImpairment of one-carbon metabolism during pregnancy, either due to nutritional deficiencies in B9 or B12 vitamins or caused by specific genetic defects, is often associated with neurological defects, including cognitive dysfunction that persists even after vitamin supplementation. Animal nutritional models do not allow for conclusions regarding the specific brain mechanisms that may be modulated by systemic compensations. Using the Cre-lox system associated to the neuronal promoter Thy1.
View Article and Find Full Text PDFATL1-related spastic paraplegia SPG3A is a pure form of hereditary spastic paraplegia. Rare complex phenotypes have been described, but few data concerning cognitive evaluation or molecular imaging of these patients are available. We relate a retrospective collection of patients with SPG3A from the Neurology Department of Nancy University Hospital, France.
View Article and Find Full Text PDFBackground: STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia.
Objective: We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48.
A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases.
View Article and Find Full Text PDFAmong the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one.
View Article and Find Full Text PDFDeficiencies in methyl donors, folate, and vitamin B12 are known to lead to brain function defects. Fetal development is the most studied but data are also available for such an impact in elderly rats. To compare the functional consequences of nutritional deficiency in young versus adult rats, we monitored behavioral outcomes of cerebellum and hippocampus circuits in the offspring of deficient mother rats and in adult rats fed a deficient diet from 2 to 8 months-of-age.
View Article and Find Full Text PDFThe micronutrients vitamins B9 and B12 act as methyl donors in the one-carbon metabolism involved in transmethylation reactions which critically influence epigenetic mechanisms and gene expression. Both vitamins are essential for proper development, and their deficiency during pregnancy has been associated with a wide range of disorders, including persisting growth retardation. Energy homeostasis and feeding are centrally regulated by the hypothalamus which integrates peripheral signals and acts through several orexigenic and anorexigenic mediators.
View Article and Find Full Text PDFThe pathomechanisms that associate a deficit in folate and/or vitamin B12 and the subsequent hyperhomocysteinemia with pathological brain ageing are unclear. We investigated the homocysteinylation of microtubule-associated proteins (MAPs) in brains of patients with Alzheimer's disease or vascular dementia, and in rats depleted in folate and vitamin B12, Cd320 KO mice with selective B12 brain deficiency and H19-7 neuroprogenitors lacking folate. Compared with controls, N-homocysteinylated tau and MAP1 were increased and accumulated in protein aggregates and tangles in the cortex, hippocampus and cerebellum of patients and animals.
View Article and Find Full Text PDFThe micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency.
View Article and Find Full Text PDFDeficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.
View Article and Find Full Text PDFThe methyl donors folate (vitamin B9) and vitamin B12 are centrepieces of the one-carbon metabolism that has a key role in transmethylation reactions, and thus in epigenetic and epigenomic regulations. Low dietary intakes of folate and vitamin B12 are frequent, especially in pregnant women and in the elderly, and deficiency constitutes a risk factor for various diseases, including neurological and developmental disorders. In this respect, both vitamins are essential for normal brain development, and have a role in neuroplasticity and in the maintenance of neuronal integrity.
View Article and Find Full Text PDFWe examined the gastric mucosa structure and inflammatory status in control well-nourished Wistar dams and in Wistar dams deprived of choline, folate, and vitamin B12 during gestation and suckling periods, and in their offspring just before birth and at weaning. In this model of methyl donor deficiency (MDD), structural protein (E-cadherin and actin) N-homocysteinylation was measured through immunoprecipitation and proximity ligation assays. Cellular stress, inflammation, and apoptosis were estimated by the analysis of the NF-κB pathway, and the expression of superoxide dismutase, cyclooxygenase-2, tumor necrosis factor α, caspases 3 and 9, and TUNEL assay.
View Article and Find Full Text PDFWhereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N₂, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase.
View Article and Find Full Text PDFDietary methyl donors and their genetic determinants are associated with Crohn's disease risk. We investigated whether a methyl-deficient diet (MDD) may affect development and functions of the small intestine in rat pups from dams subjected to the MDD during gestation and lactation. At 1 month before pregnancy, adult females were fed with either a standard food or a diet without vitamin B12, folate and choline.
View Article and Find Full Text PDFDespite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%).
View Article and Find Full Text PDFObjective: Diets rich in protein are often used for weight loss in obese patients, but their long-term effects are not fully understood. Homocysteine (Hcy) is considered to be a risk factor for cardiovascular diseases, and its levels are influenced by diet, particularly the protein and fat content. We studied the effect of diets with varying fat/protein content on body weight and composition, food intake, Hcy, B vitamins, leptin, and several pro-inflammatory cytokines.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) result from complex interactions between environmental and genetic factors. Low blood levels of vitamin B12 and folate and genetic variants of related target enzymes are associated with IBD risk, in population studies. To investigate the underlying mechanisms, we evaluated the effects of a methyl-deficient diet (MDD, folate, vitamin B12 and choline) in an experimental model of colitis induced by dextran sodium sulphate (DSS), in rat pups from dams subjected to the MDD during gestation and lactation.
View Article and Find Full Text PDFThe aim of this study was to ascertain the roles of neuropeptide W (NPW) and obestatin in feeding and endocrine regulations and their interactions with leptin, corticosterone, and insulin, three key hormones involved in metabolic homeostasis. Plasma variations were measured in obese hyperphagic Zucker rats either following a one-day fast, or after chronic food restriction (one-third less food than normal for three weeks). Obestatin did not vary by feeding condition, and did not differ between lean and obese rats; it likely does not play any role in feeding regulation.
View Article and Find Full Text PDFAlthough recent studies have documented compensatory generation of neurons in adult brains in response to various insults, a noninjurious short episode of hypoxia in rat neonates has been shown to trigger neurogenesis within the ensuing weeks, without apparent brain lesions. Very little is known of the long-term consequences. We therefore investigated the effects of such a conditioning-like hypoxia (100% N(2), 5 min) on the brain and the cognitive outcomes of rats at 40 to 100 days of age.
View Article and Find Full Text PDFMethyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation.
View Article and Find Full Text PDFIn the context of their potential implication in regenerative strategies, we characterized cell mechanisms underlying the fate of embryonic rat hippocampal H19-7 progenitors in culture upon induction of their differentiation, and tested their capacities to integrate into a neuronal network in vitro. Without addition of growth factors, nearly 100% of cells expressed various neuronal markers, with a progressive rise of the expression of Synapsin I and II, suggesting that cells developed as mature neurons with synaptogenic capacities. Fully differentiated neurons were identified as glutamatergic and expressed the receptor-associated protein PSD-95.
View Article and Find Full Text PDFGestational deficiency in methyl donors such as folate and vitamin B12 impairs homocysteine metabolism and can alter brain development in the progeny. Since short hypoxia has been shown to be neuroprotective in preconditioning studies, we aimed to investigate the effects of brief, non-lesioning neonatal hypoxia (100% N2 for 5 min) on the developing brain of rats born to dams fed either a standard diet or a diet lacking vitamins B12, B2, folate and choline until offspring's weaning. While having no influence on brain accumulation of homocysteine and concomitant apoptosis in 21-day-old deficient pups, exposure to hypoxia reduced morphological injury of the hippocampal CA1 layer.
View Article and Find Full Text PDFHyperhomocysteinemia has been identified as a risk factor for neurological disorders. To study the influence of early deficiency in nutritional determinants of hyperhomocysteinemia on the developing rat brain, dams were fed a standard diet or a diet lacking methyl groups during gestation and lactation. Homocysteinemia progressively increased in the offspring of the deficient group and at 21 days reached 13.
View Article and Find Full Text PDF