Publications by authors named "Bossart K"

A vaccine against human enterovirus 71 (EV-A71) is urgently needed to combat outbreaks of EV-A71 and in particular, the serious neurological complications that manifest during these outbreaks. In this study, an EV-A71 virus-like-particle (VLP) based on a B5 subgenogroup (EV-A71-B5 VLP) was generated using an insect cell/baculovirus platform. Biochemical analysis demonstrated that the purified VLP had a highly native procapsid structure and initial studies in vivo demonstrated that the VLPs were immunogenic in mice.

View Article and Find Full Text PDF

Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe and often fatal disease in pigs and humans. There are currently no vaccines or treatments approved for human use. Studies in small-animal models of NiV infection suggest that antibody therapy may be a promising treatment.

View Article and Find Full Text PDF

Unlabelled: Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use.

View Article and Find Full Text PDF

Dengue virus (DENV) is considered to be the most important arthropod-borne viral disease and causes more than 100 million human infections annually. To further characterize primary DENV infection in vivo, rhesus macaques were infected with DENV-1, DENV-2, DENV-3, or DENV-4 and clinical parameters, as well as specificity and longevity of serologic responses, were assessed. Overt clinical symptoms were not present after infection.

View Article and Find Full Text PDF

The family Paramyxoviridae consists of a group of large, enveloped, negative-sense, single-stranded RNA viruses and contains many important human and animal pathogens. Molecular and biochemical characterization over the past decade has revealed an extraordinary breadth of biological diversity among this family of viruses. Like all enveloped viruses, paramyxoviruses must fuse their membrane with that of a receptive host cell as a prerequisite for viral entry and infection.

View Article and Find Full Text PDF

Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013.

View Article and Find Full Text PDF

Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities.

View Article and Find Full Text PDF

Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia.

View Article and Find Full Text PDF

In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease.

View Article and Find Full Text PDF

Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches.

View Article and Find Full Text PDF

Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response.

View Article and Find Full Text PDF

Hendra virus (HeV) is a recently emerged zoonotic paramyxovirus that can cause a severe and often fatal disease in horses and humans. HeV is categorized as a biosafety level 4 agent, which has made the development of animal models and testing of potential therapeutics and vaccines challenging. Infection of African green monkeys (AGMs) with HeV was recently demonstrated, and disease mirrored fatal HeV infection in humans, manifesting as a multisystemic vasculitis with widespread virus replication in vascular tissues and severe pathologic manifestations in the lung, spleen, and brain.

View Article and Find Full Text PDF

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are emerging zoonotic paramyxoviruses that can cause severe and often lethal neurologic and/or respiratory disease in a wide variety of mammalian hosts, including humans. There are presently no licensed vaccines or treatment options approved for human or veterinarian use. Guinea pigs, hamsters, cats, and ferrets, have been evaluated as animal models of human HeV infection, but studies in nonhuman primates (NHP) have not been reported, and the development and approval of any vaccine or antiviral for human use will likely require efficacy studies in an NHP model.

View Article and Find Full Text PDF

Nipah virus (NiV) is an enigmatic emerging pathogen that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75 percent and there are no vaccines or treatments approved for human use. Guinea pigs, hamsters, cats, ferrets, pigs and most recently squirrel monkeys (New World monkey) have been evaluated as animal models of human NiV infection, and with the exception of the ferret, no model recapitulates all aspects of NiV-mediated disease seen in humans.

View Article and Find Full Text PDF

Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals.

View Article and Find Full Text PDF

Using a monoclonal antibody directed to domain I of the West Nile virus (WNV) envelope (E) protein, we identified a continuous (linear) epitope that was immunogenic during WNV infection of horses. Using synthetic peptides, this epitope was mapped to a 19 aa sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera.

View Article and Find Full Text PDF

Hendra virus (HeV) is a member of the broadly tropic and highly pathogenic paramyxovirus genus Henipavirus. HeV is enveloped and infects cells by using membrane-anchored attachment (G) and fusion (F) glycoproteins. G possesses an N-terminal cytoplasmic tail, an external membrane-proximal stalk domain, and a C-terminal globular head that binds the recently identified receptors ephrinB2 and ephrinB3.

View Article and Find Full Text PDF
Article Synopsis
  • Nipah virus (NiV) and Hendra virus (HeV) are dangerous zoonotic viruses that have reappeared in the last decade, prompting research into vaccines.
  • A study tested a vaccine made from the HeV attachment glycoprotein and an adjuvant in cats, showing varying levels of immune response among the vaccinated animals.
  • All vaccinated cats were protected from disease after being exposed to NiV, demonstrating promising progress for developing a vaccine for humans against these viruses.
View Article and Find Full Text PDF

Characterization of the J virus or, in keeping with recent nomenclature recommendations, J paramyxovirus (JPV) genome revealed a unique genome structure, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. The small hydrophobic (SH) protein and the transmembrane (TM) protein genes are predicted to encode proteins 69 and 258 aa in size, respectively. The 4401 nt attachment (G) protein gene, much larger than most other paramyxovirus attachment protein genes sequenced to date, encodes a putative 709 aa attachment protein and contains distally a second open reading frame (ORF-X) 2115 nt long.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) causes a highly contagious vesicular disease affecting cloven hoofed animals and is considered the most economically important disease worldwide. Recent FMD outbreaks in Europe and Taiwan and the associated need for rapid diagnostic turnaround have identified limitations that exist in current diagnostic capabilities. To aid improved diagnosis, a serotype-independent FMDV antigen capture assay was developed using antibodies directed against a highly conserved cross-reactive protein fragment (1AB') located within the structural protein 1AB.

View Article and Find Full Text PDF

We have previously identified neutralizing human monoclonal antibodies against Nipah virus (NiV) and Hendra virus (HeV) by panning a large nonimmune antibody library against a soluble form of the HeV attachment-envelope glycoprotein G (sG HeV). One of these antibodies, m102, which exhibited the highest level of cross-reactive neutralization of both NiV and HeV G, was affinity maturated by light-chain shuffling combined with random mutagenesis of its heavy-chain variable domain and panning against sGHeV. One of the selected antibody Fab clones, m102.

View Article and Find Full Text PDF

Hendra virus (HeV) and Nipah virus (NiV) are closely related paramyxoviruses that infect and cause disease in a wide range of mammalian hosts. To determine whether host receptor molecules play a role in species-specific and/or virus-specific infection we have cloned and characterized ephrin-B2 and ephrin-B3 ligands from a range of species, including human, horse, pig, cat, dog, bats (Pteropus alecto and Pteropus vampyrus) and mouse. HeV and NiV were both able to infect cells expressing any of the ephrin-B2 and ephrin-B3 molecules.

View Article and Find Full Text PDF

Hendra virus (HeV) is an emerging paramyxovirus capable of infecting and causing disease in a variety of mammalian species, including humans. The virus infects its host cells through the coordinated functions of its fusion (F) and attachment (G) glycoproteins, the latter of which is responsible for binding the virus receptors ephrinB2 and ephrinB3. In order to identify the receptor binding site, a panel of G glycoprotein constructs containing mutations was generated using an alanine-scanning mutagenesis strategy.

View Article and Find Full Text PDF

Hendra virus (HeV) and Nipah virus (NiV) are related emerging paramyxoviruses classified in the genus Henipavirus. Both cause fatal disease in animals and humans and are classified as biosafety level 4 pathogens. Here we detail two new multiplexed microsphere assays, one for antibody detection and differentiation and another designed as a surrogate for virus neutralization.

View Article and Find Full Text PDF

Hendra and Nipah viruses are related emergent paramyxoviruses that infect and cause disease in animals and humans. Disease manifests as a generalized vasculitis affecting multiple organs, but is the most severe in the respiratory and central nervous systems. The high case fatality and person-to-person transmission associated with the most recent NiV outbreaks, and the recent re-emergence of HeV, emphasize the importance and necessity of effective therapeutics for these novel agents.

View Article and Find Full Text PDF