Molecular dynamics simulations have been employed to investigate the effect of molecular polydispersity on the aggregation of asphaltene. To make the large combinatorial space of possible asphaltene blends accessible to a systematic study via simulation, an upfront unsupervised machine-learning approach (clustering) was employed to identify a reduced set of model molecules representative of the diversity of asphaltene. For these molecules, single asphaltene model simulations have shown a broad range of aggregation behaviors, driven by their structural features: size of the aromatic core, length of the aliphatic chains, and presence of heteroatoms.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2021
The complex band structure (CBS), although not directly observable, determines many properties of a material where the periodicity is broken, such at surfaces, interfaces and defects. Furthermore, its knowledge helps in the interpretation of electronic transport calculations and in the study of topological materials. Here we extend the transfer matrix method, often used to compute the complex bands, to electronic structures constructed using an atomic non-orthogonal basis set.
View Article and Find Full Text PDFA review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements.
View Article and Find Full Text PDF